
1 Logistic Regression

Logistic Regression is a linear classification procedure that coincides with the maximum entropy ap-
proach. In general maximum entropy approaches are those that consciously eschew any assumptions
beyond a set of observations.

Entropy is a quantity that has been studied in detail in several disciplines. You have heard of this
in the Second Law of Thermodynamics. You will see this in Information Theory and communication,
as well as briefly in many initial probability courses, where entropy is a measure of information
that one obtains when observing a random variable. In fact, there is a equivalence between the
thermodynamic and the information theoretic views, where information engines convert information
into thermodynamic work and vice versa. See.

Maximum Entropy approach The view we adopt here is from probability theory. For now,
the simplest view suffices to explain logistic regression. If a random variable X takes on values
{x1, . . . ,xk} (recall this set is called the support of X) with probabilities p1, . . . ,pk respectively, the
entropy of X is defined to be

H(X) =

k∑
i=1

pi log
1

pi
,

where the log is to base 2. This quantity, the entropy H(X), can be interpreted as the average
information (in bits) that we obtain when we observe a realization of the random variable X.

Generally speaking, we would like to know what happens with partial observations of X as
well. This setting is usually modeled as if we observe a (potentially correlated) random variable
Y . The amount of information we still get from observing X after the observation of Y is called
the conditional entropy H(X|Y ). It can be shown that H(X|Y ) ≤ H(X) with equality if X and
Y are independent random variables. Alternatively, if we knew some things about X already, the
information we would get from its observation would be reduced. 1

Among all possible probability distributions on a set of size k, the uniform distribution p1 =
p2 = . . . = pk =

1
k assigning each element of the set equal probability has the highest entropy among

all the probability models on the set. If a probability model assigns any element more probability
than another, its entropy is lower than that of the uniform model.

If we had to formalize the notion that we had no information on X (other than that its support
{x1, . . . ,xk}), the uniform distribution would be what we would intuitively choose. The intuition is
that any other distribution q could be interpreted as though we had some assumptions a-priori that
made some elements of the support {x1, . . . ,xk} more likely than others. From the discussion in the
previous paragraph, we would choose the maximum entropy distribution to capture the notion of
no assumptions in a quantitative way.

We can take this further. If we adopt a constraint on X, say EX = µ. Given this constraint on
X, the maximum entropy distribution on X would be the one that adopted no further assumptions
other than that EX = µ, namely the maximum entropy distribution among all distributions with
EX = µ.

1Since H(X) would have been the amount of information we would have got if we saw X straight up (without
seeing Y first), the amount of information Y provides about X is

I(X,Y ) = H(X)−H(X|Y ).

Since H(X) ≥ H(X|Y ), we have that I(X,Y ) ≥ 0.
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We can figure out this maximum entropy model using variational calculus developed for con-
strained optimization (you can recall this from MATH 243/244, for example). We consider the
Lagrangian

L(p, λ, ν) =
k∑
i=1

pi log
1

pi
− λ

∑
pixi − ν

∑
pi,

where p = (p1, . . . ,pk) is the probability mass function on {x1, . . . ,xk}. Set the gradient ∇L = 0
to get that for all i,

log
1

pi
+ log e− λxi − ν = 0.

The above equation implies that for all i,

pi = exp (β0 + βxi),

where β0 and β1 = λ ln 2 are constants, chosen to ensure that∑
pixi = µ and

∑
pi = 1.

The constants β0 and β1 are less important for what is to follow, what is more important is the
exponential form we get for the probabilities. Indeed maximum entropy distributions always have
this form, as the following Theorem attests.

Given m different constraints on a random variable X, Eri(X) = αi where for 1 ≤ i ≤ m ri are
real valued functions and αi ∈ R, the distribution on X with maximum entropy is (if X is discrete,
f below is a probability mass function, and if X is continuous, f is a probability density function):

f(x) = exp

(
β0 +

m∑
i=1

βiri(x)

)
.

In the above, β0, . . . ,βm are numbers chosen so that f is a probability mass or density function
(i.e., integrates/sums to 1) and Eri(X) = αi for i = 1, . . . ,m.

Logistic Regression: Maximum Entropy view In classification problems, the probabilistic
approach assigns to each example x in the example space, a conditional probability distribution
p(y|x) that denotes the probability the label of x is y. So if we have two possible labels, every
example x will be assigned a Bernoulli distribution (modeling the generation of the label).

Let X ⊂ Rd be the set of all possible instances that we will assign a label to. We call X the
instance space. Suppose the classification problem at hand assigns one of k labels (denoted by y)
to each instance x. Without loss of generality, let the set of all labels be {1, . . . ,k}. The set of
all instances in X that could get a label j will be called class j, denoted by Cj . Therefore, the
classification task is to break the space X into k regions (not necessarily disjoint), that is

X =

k⋃
j=1

Cj .

Rather than specify Cj , we take what is called a generative approach. We model the probability
distribution f(X|Y = j) (the probability distribution over the instance space given the label, once
again f is a pdf if X is uncountable and a pmf if X is countable).

Logistic regression models each class, f(X|Y = j), j = 1, . . . ,k, using the maximum entropy
model when we constrain E[X|Y = j]. Note that X ∈ X is a vector in Rd (i.e., has d components),
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so constraining E[X|Y = j] corresponds to d moment constraints (one for each component of the
vector). In general, the unbiased estimate of E[X|Y = j] will be∑m

i=1
yi=j

xi

Nj
,

where Nj is the number of training examples that have j as their label (can you show this?). The
logistic regression model looks for the distribution with maximum entropy that sets E[X|Y = j] to
be

E[X|Y = j] =

∑m
i=1
yi=j

xi

Nj
. (1)

Such a maximum entropy model, from the prior section, is

f(X = x|Y = j) = exp
(
βj0 + βTj x

)
,

where βj0 ∈ R, βj ∈ Rd has the same number of coordinates as the training instance x, with βj0
and βj chosen to satisfy (i)

∫
x∈Cj

df(X|Y = j) = 1 (or
∑
f(X|Y = j) = 1 if X is countable) as well

as (ii) the constraints in Equation (1) above. Generally one of the classes, say class 1, is taken as a
reference, and we have for j = 2, . . . ,k, using Bayes Rule on both the numerator and denominator
(and cancelling f(x) in both numerator and denominator):

f(X = x|Y = j)

f(X = x|Y = 1)
=

P(Y = j|X = x)

P(Y = 1|X = x)
· P(Y = 1)

P(Y = j)
.

Rearranging, we get
P(Y = j|X = x)

P(Y = 1|X = x)
= exp

(
β̃j0 + β̃Tj x

)
. (2)

Here β̃j0 = βj0−β10+ln P(Y=j)
P(Y=1) , and β̃j = βj −β1, where βj0, βj (respectively β10 and β1) were the

constants we used for maximum entropy modeling for classes j (respectively 1). For the ML case,
P(Y = j) = 1

k for all j, therefore β̃j0 = βj0 − β10. Using fact that
∑

j P(Y = j|X = x) = 1 for all
x, we have for all 2 ≤ j ≤ k,

P(Y = j|xi) =
exp

(
β̃j0 + β̃Tj x

)
1 +

∑k
i=2 exp

(
β̃i0 + β̃Ti x

) . (3)

Computing the left side of (1) is non-trivial in general, given the integration should be over Cj ,
which may be complicated. But consider the random quantity

XP(Y = j|X) = X
f(X|Y = j)P(Y = j)

f(X)
,

and therefore observe that

E
[
XP(Y = j|X)

]
= E[X|Y = j]P(Y = j).

Therefore, the quantity XP(Y = j|X) can be thought of as a random variable whose expectation
equals the left side of (1) multiplied by P(Y = j). Since our training data contains n points, (xi, yi),
i = 1, . . . ,N , we can think of

1

N

∑
i

xiP(Y = j|xi)
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to be a Monte Carlo estimate of
E[X|Y = j]P(Y = j).

In (1) we therefore replace E[X|Y = j] by its Monte Carlo estimate. Setting P(Y = j) =
Nj

N
(the natural unbiased estimate), and replacing E[X|Y = j] by its Monte Carlo estimate, we obtain
(writing = though the left side is only meant to be an approximation)

n∑
i=1

xiP(Y = j|xi) =
∑
l:yl=j

xl. (4)

Logistic Regression finds parameters β0 and βj (for each j) as solutions to the equation above.
To summarize, we used Maximum Entropy modeling of X given each class label, subject to first

moment (expectation) constraints on X given the class label to obtain Equation (1). But rather
than use an integral to compute E[X|Y = j] to get the parameters, we obtain the parameters
using Equation (4) instead, where E[X|Y = j] is replaced by its Monte Carlo estimate. The
classical formulation arrives at the same optimization (4) from a Maximum Likelihood perspective,
assuming (3) rather than deriving it as above. We describe the classical view in the next section.

Logistic Regression: Classical presentation We conclude with a classical presentation for
comparison, which leads to the same optimization (4). We set up the log likelihood of the training
data. In the classical presentation, (3) is assumed, rather than flowing from a maximum entropy
assumption as we did, that is

P(Y = j|X = x) =
exp

(
β̃j0 + β̃Tj x

)
1 +

∑k
i=2 exp

(
β̃i0 + β̃Ti x

)
and

P(Y = 1|X = x) =
1

1 +
∑k

i=2 exp
(
β̃i0 + β̃Ti x

) .
Note that there are k − 1 sets of parameters β̃i, for i = 2, . . . ,k.

To simplify exposition, we will consider the case k = 2, so there is only one set of parameters β̃.
In this case, it is convenient to think of the labels as 0 and 1 (instead of 1 and 2), so we can write

P(Y = y|X = x) =
exp

(
yβ̃0 + yβ̃Tx

)
∑1

ỹ=0 exp
(
ỹβ̃0 + ỹβ̃Tx

) .
Write the likelihood of training examples (xi, yi) given examples x1, . . . ,xm, assuming that the label
Yi given the instance xi is independent of all other examples to yield p

P(y1, . . . ,yn|x1, . . . ,xn) =

m∏
i=1

P(yi|xi) =

∏m
i=1 exp

(
yiβ̃0 + yiβ̃

Tx
)

(∑1
ỹ=0 exp

(
ỹβ̃0 + ỹβ̃Tx

))m .
It is easier to work with log-likelihood,

log
∏

P(yi|xi) =
m∑
i

logP(yi|xi).
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We just find the value of β̃ that maximizes the above log likelihood. You may ask why maximizing
the above should give β̃ parameters that match the Maximum Entropy approach. Well, it is easy to
verify that the points maximizing the log likelihood are exactly those that satisfy (4). To see this,
first note that

d

dx

ex

1 + ex
=

ex

1 + ex

(
1− ex

1 + ex

)
,

and
d

dx

1

1 + ex
= − 1

1 + ex

(
1− 1

1 + ex

)
,

so the chain rule tells us

∇β̃ log
∏

P(yi|xi) =
m∑
i

∇β̃ logP(yi|xi)

=
∑
i:yi=1

1

P(yi|xi)
P(yi|xi)(1− P(yi|xi))

[
1
xi

]

−
∑
i:yi=0

1

P(yi|xi)
P(yi|xi)(1− P(yi|xi))

[
1
xi

]
The above equations are easily rewritten to yield Equation 4 again.

Note: When solving for the parameters, it is often better to add in a `2 regularization on β̃s. To
see why, note that if the data is linearly separable, there exists parameter values β̃ such that ensures
P(yi|xi) ≥ P(1− yi|xi) for all i. If this is the case, scaling β̃ by any number greater than 1 increases
the likelihood, hence pushing the optimal parameters to infinity, a meaningless exercise. In these
cases, it is useful to limit the length of β̃. As we saw in the Ridge Regression module, we can do
this by using `2 regularization. Implementations (including scikit-learn) use this regularization by
default.
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