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The most important distribution we will consider this term is the Gaus-
sian model. You have seen this before in EE 342, but perhaps have not
been exposed to the full picture about why this is important, other than the
Central Limit Theorem. We will go a little more in depth in this course. We
will also pay some attention to the concept of expectations in this section,
and in the process understand a little more about random variables.

4.1 Univariate Gaussians, expectation and the Moment Gen-
erating function

A univariate standard Gaussian (also called normal) random variable Z takes
values between −∞ and ∞, satisfies

EZ = 0

and
var(Z)

def
= E[Z2]− (EZ)2 = 1,

and putting the two together, we also get E[Z2] = 1.

Remark It is common to write E[Z2] (expectation of Z2) as simply EZ2,
i.e., the expectation operator simply operates on whatever follows it (here
Z2). If we wanted to write "square of the expectation of Z", we would write
(EZ)2. For an arbitrary random variable W : (expectation of W 2, EW 2) and
(square of the expectation of W , (EW )2) are obviously not the same, in fact
in general

EW 2 ≥ (EW )2

with equality iff W is a constant random variable (i.e., a random variable
that takes on only one value with probability 1). �

The pdf of the standard Gaussian (normal) is

fZ(z) =
1√
2π

exp(−z2/2), z ∈ R,

where we use R to denote the set of all real numbers. We often denote this pdf
by N (0, 1), where N stands for normal, the first parameter in the paranthesis
(here, 0) denotes the expectation and the second parameter (here, 1) the
variance.
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The indefinite integral of e−z2/2 does not exist in closed form, but the
definite integrals

∫

∞

−∞

e−z2/2dz =
√
2π,

(do you know how to prove the above?) and from the fact that EZ2 = 1, we
must have

∫

∞

−∞

z2e−z2/2dz =
√
2π.

By the end of the section you will know more definite integrals related to
the Gaussian.

If Z is a standard Gaussian, then σZ + µ is a Gaussian random variable
too, with mean µ and variance σ2. Its pdf (which you can obtain by the
standard argument of transformation of random variables) is

fW (w) =
1√
2π

exp(−(w − µ)2/2), w ∈ R.

We of course now deduce from the fact that the pdf must integrate to 1 that

∫

∞

−∞

exp(−(w − µ)2/2) =
√
2π,

from the fact that EW = µ that

∫

∞

−∞

w exp(−(w − µ)2/2) = µ
√
2π,

and from the fact that EW 2 = var(W ) + (EW )2 = σ2 + µ2 that

∫

∞

−∞

w2 exp(−(w − µ)2/2) = (σ2 + µ2)
√
2π.

To gain more insights into random variables in general and the Gaussian
random variable in particular, let us study the moment generating function
of Z,

E exp(tZ)

where E denotes expectation. We went over the expectation of a function of
a random variable in class, and concluded

E exp(tZ) =

∫

∞

−∞

etzfZ(z)dz =

∫

∞

−∞

1√
2π

etz−z2/2dz = et
2/2
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where the last equality follows by completing the square in the exponent,

tz − z2/2 = −(z − t)2/2 + t2/2,

followed by using~(??).
To see why the moment generating function is useful, observe the Taylor

series expansion

etZ = 1 + tZ + . . .+
tnZn

n!
+ . . . =

∞
∑

t=0

,

from which we get that

EetZ = 1 + tEZ + . . .+
tnEZn

n!
+ . . . ,

The quantity EZn is the n’th moment of Z (so the expectation EZ is also
called the first moment. The moment generating function effectively deter-
mines the pdf (we will not qualify this formally, but this would be true of
most distributions we will encounter), so knowing all moments of Z tells you
everything you need to know about the pdf of Z. In that sense, one could
consider the expectation EZ and variance of Z to be first and second order
detail about the random variable.

For the Gaussian case, observe that

et
2/2 =

∞
∑

t=0

(t2/)n

n!
=

∞
∑

t=0

t2n

2nn!
=

∞
∑

k=0

t2k(2k)!

2kk!(2k)!
,

implying that if Z ∼ N (0, 1), then for all n

EZn =

{

0 if n is odd,
(2k)!
2kk!

if n = 2k.

Verify that if W ∼ N (µ, σ2), then the moment generating function of W
is exp(tµ+ 1

2σ
2t2). We will need this in the multivariate case.

4.2 Multivariate Gaussians (pdf)

Suppose X1, . . . ,Xk are continuous random variables, and each of Xi is Gaus-
sian. This setup by itself is not that useful, it needs an additional component.
We define X1, . . . ,Xk to be a multivariate Gaussian (also jointly Gaussian,
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or sometimes, just Gaussian) if all linear combinations a1X1 + · · · + akXk,
ai ∈ R happen to be univariate Gaussian random variables.

We will show below a counterexample of two Gaussian random variables
X1 and X2 that are not jointly/multivariate Gaussian. We will then show
that independent Gaussians are multivariate Gaussian. Finally, we will de-
rive the pdf of multivariate Gaussians.

Counterexample Before we unravel this definition, let us look at the
following counterexample. X1 ∼ N(0, 1) is a standard Gaussian, and W is
a Bernoulli 1/2 random variable independent of X1. Let X2 = (2W − 1)X1,
namely if W = 1, X2 = X1 and if W = 0, X2 = −X1. Then X2 ∼ N(0, 1)
(prove it). But X1 and X2 are not jointly Gaussian, because X1+X2 assigns
the number 0 probabilty 1/2. Now, Gaussian pdfs can be degenerate (when
variance =0, the pdf assigns probability 1 to the mean). But no pdf, leave
alone a Gaussian one, can ever assign probability 1/2 to any element of its
support.

Independent normals If X1, . . . ,Xk are independent normal variables,
Xi ∼ N (µi, σ

2
i ), then they are jointly Gaussian. Then for all a1, . . . ,ak,

ai ∈ R, we have the moment generating function of a1X1+a2X2+ . . .+akXk

to be

M(t) = E exp (t(a1X1 + a2X2 + . . .+ akXk))

=
k
∏

i=1

E exp (taiXi)

=
k
∏

i=1

exp

(

taiµi +
1

2
t2a2iσ

2
i

)

= exp



t

(

∑

i

aiµi

)

+
1

2
t2





∑

j

a2jσ
2
j







 (1)

where the second equality above is because Xi are independent. The moment
generating function M(t) calculated above is simply the moment generating
function of a Gaussian random variable with mean

∑

i aiµi and variance
∑

j a
2
jσ

2
j , and thus we conclude a1X1 + a2X2 + . . . + akXk is Gaussian.

Therefore, independent normals are also jointly Gaussian.
Of course, we know the joint pdf of independent normals Xi ∼ N (µi, σ

2
i )
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from the independence property,

fX1,...,Xk
(x1, . . . ,xk) =

∏

j

fXj
(xj) =

1

(2π)k/2
∏

j σj
exp

(

−
∑

i

(xi − µi)
2

2σ2
i

)

.

It is useful to rewrite it in a slightly different way. Let

X =







X1
...

Xk






,

and let

µ = EX =







µ1
...
µk






, and cov(X) = E[(X− µ)(X− µ)T ]

def
= K,

where K is a diagonal matrix whose diagonal entries are σ2
1, . . . ,σ

2
k. The

determinant of K, |K| = ∏i σi and K−1 is a diagonal matrix whose entries
are 1

σ2 , . . . ,
1
σ2

k

. Using these observations, we can rewrite the pdf of X, using

the notation x = (x1, . . . ,xk)

fX(x) =
1

(2π)k/2|K|1/2 exp
(

−1

2
(x− µ)TK−1(x− µ)

)

. (2)

4.2.1 PDF of Jointly Gaussian random variables

We will now derive the pdf of joint/multivariate Gaussian random from its
definition. The route to the pdf here will be via the moment generating
function and the fact that we know the pdf of independent (and therefore
automatically multivariate) Gaussian random variables. In what follows, we
assume

X =







X1
...

Xk






,

and that

EX = µ =







µ1
...
µk






, and cov(X) = E[(X− µ)(X− µ)T ] = K

for some positive definite matrix K. Review positive definite matrices from
module in EE345.
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Moment Generating function Generalizing the univariate case, the MGF
of a multivariate random vector X = (X1, . . . ,Xk) is defined to be function
M : Rk → R, where for any z ∈ R

k

MX(z) = E exp(zTX).

MGF of jointly Gaussian random variables By definition of multivari-
ate Gaussian vectors, we know that an linear combination of the components
of X is Gaussian.

Show that for all z ∈ R
k, zTX is univariate Gaussian, with mean equal

to zTµ and variance zTKz.
Given the above result, note that M(z), the moment generating function

for X is simply the moment generating function of the univariate Gaussian,
zTX, evaluated at t = 1. Using the result for mgfs of univariate Gaussians,
we therefore get

MX(z) = MzTX(1) = exp

(

zTµ+
1

2
zTKz

)

.

We are almost home. Since K is symmetric, we can use its spectral
decomposition to write K = V ΛV T , where V is a unitary matrix (ie V is
a square invertible matrix whose inverse is V T ) and Λ is a diagonal vector
with the eigenvalues of K on its diagonal. The eigenvalues are all > 0 since
K is positive definite, so Λ−1 exists as well.

Let Y = V T (X − µ) so that X = VY + µ. Note that EY = 0 and
cov(Y ) = Λ. Y is a multivariate Gaussian as well (why?) and its mgf is
therefore for any z = (z1, . . . ,zk),

MY(z) = exp

(

1

2
zTΛz

)

= exp





1

2

∑

j

z2i λi



,

which from~(1) is exactly the mgf of independent N (0, λi) Gaussians.
Since mgfs are uniquely associated with pdfs, we have that the components
of Y are independent N (0, λi) Gaussians, and the pdf of Y is from~(2), for
any y ∈ R

k,

fY(y) =
1

√
2π

k/2|Λ| 12
exp

(

−1

2
yTΛ−1y

)

.
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