EE 342: Probability and Statistics

Module 2.2: Probability Laws

Lecturer: Yuanzhang Xiao

Fun Fact: Gauss can prove axioms.

Read BT Chapter 1.2.

2.0.1 How to Define a Probability Law?

Probability Axioms:

- 1. Nonnegativity: $\mathbf{P}(A) \ge 0$ for every event A
- 2. Additivity: if A and B are disjoint, we have

$$\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B);$$

if A_1, A_2, \ldots are disjoint, we have

$$\mathbf{P}(A_1 \cup A_2 \cup \cdots) = \mathbf{P}(A_1) + \mathbf{P}(A_2) + \cdots$$

3. Normalization: $\mathbf{P}(\Omega) = 1$

2.1 Probability Laws

2.1.1 Properties of Probability Laws

Most properties of probability laws can be derived from the three probability axioms.

- $\mathbf{P}(\phi) = 0$
- if $A \subset B$, then $\mathbf{P}(A) \leq \mathbf{P}(B)$
- $\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B) \mathbf{P}(A \cap B)$
- $\mathbf{P}(A \cup B) \leq \mathbf{P}(A) + \mathbf{P}(B)$; in general, $\mathbf{P}(A_1 \cup A_2 \cup \cdots \cup A_n) \leq \sum_{i=1}^n \mathbf{P}(A_i)$
- $\mathbf{P}(A \cup B \cup C) = \mathbf{P}(A) + \mathbf{P}(A^c \cap B) + \mathbf{P}(A^c \cap B^c \cap C)$

Exercises: Problems 9–10 in Chapter 1 of BT.

We can illustrate all the above properties by Venn diagrams.

Now the question is how to calculate probabilities?

Spring 2025

2.1.2 Calculating Probabilities in Discrete Models

In discrete models, the universal set Ω has a finite number of elements/outcomes.

Discrete Probability Law

$$\mathbf{P}(\{s_1, s_2, \dots, s_n\}) = \mathbf{P}(s_1) + \mathbf{P}(s_2) + \dots + \mathbf{P}(s_n),$$

where we write $\mathbf{P}(s_i)$ for $\mathbf{P}(\{s_i\})$ hereafter.

In the special case where all n outcomes are equally likely, we have

$$\mathbf{P}(A) = \frac{\text{number of elements of } A}{n}$$

Exercises: Examples 1.2–1.3 and Problems 5–8 in Chapter 1 of BT.

2.1.3 Calculating Probabilities in Continuous Models

In continuous models, the universal set has infinitely many elements/outcomes. The probability of an event is the "length" or "area" of the set.

Exercises: Examples 1.4–1.5 in Chapter 1 of BT.