Narayana Santhanam

EE 645
Jan 22, 2023

A3 UNIVERSITY
of HAWAI'T"
'MANOA




Linear — Non-linear

Two approaches:

Kernel methods

4P UNIVERSITY
of HAWAI'T
MANOA

1/19



Linear — Non-linear

Two approaches:

Kernel methods
guarantees, well understood

4P UNIVERSITY
of HAWAI'T
MANOA

1/19



Linear — Non-linear

1/19

Two approaches:

Kernel methods
guarantees, well understood
computationally intensive (small data)

Neural networks
less well understood
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Linear — Non-linear

Two approaches:

Kernel methods
guarantees, well understood
computationally intensive (small data)

Neural networks
less well understood
computationally cheap (large data)
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Next couple of weeks

Kernel methods

High level picture
Support Vector classification and regression
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Kernel methods

High level picture

Support Vector classification and regression
Kernel PCA

Random Fourier Futures
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Next couple of weeks
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Kernel methods

High level picture

Support Vector classification and regression
Kernel PCA

Random Fourier Futures

Credit risk, Power data

23 UNIVERSITY
A\ 7)) of HAWAI'T
4 MANOA




Classification

Linearly separable

7

5

B

petallength (cm (2)

3/19



Classification

Linearly separable

7

5

B

petallength (cm (2)

|

4/19



Classification

Not linearly separable
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Classification

Not linearly separable
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Boundaries not linear..
but are linear in a higher dimensional space!
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Closer look

Principled approach for linear — nonlinear
Powerful, yet generalizes well
Often explainable
at least more than other state of art
New advances increase reach (more data)
but not as much as NN
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Stepping back

Linearly separable
Where would you draw a linear classifier?
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Not linearly separable
Where would you draw a linear classifier?
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9/19

Not linearly separable
Where would you draw a linear classifier?
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Minimum number of mistakes?
infeasible, NP-hard
Instead: variation of ¢1 loss, sum of margins
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Setting up linear classification

Distance of x from a plane w'x — b = 0?
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Setting up linear classification

Distance of x from a plane w'x — b = 0?
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Formulation of Support Vector Classification

Analyze this in some detail

2P UNIVERSITY
of HAWAI'T
MANOA

11/19



Formulation of Support Vector Classification

Analyze this in some detail
One of the key advantages: interpretability
Comes through formulation

205 UNIVERSITY
A\ ")) of HAWAI'T
11 / 19 4 MANOA




Formulation of Support Vector Classification

Analyze this in some detail
One of the key advantages: interpretability
Comes through formulation
Primal/Dual formulation is a key optimization idea
accelerations of training neural networks
resource allocation/optimization in economics,
urban planning
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Formulation

Linearly separable points:
Training data:

(X17y1)7 (X27Y2)7 M (XI‘HyI‘l)
Margin (closest distance from separating boundary)
b) = mi
Redundant parameterization scaling w, b by any number does not

change the margin
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Formulation

Support vector machine formulation:

w*, b* = arg max ~v(w, b)

W,

subject to y;(w'x; — b) > 0 (for all training (x;,y;))

Redundant parameterization: scaling w, b changes nothing
o only the directions/intercepts matter

o represent by scaling of w, b that ensures

min |w'x; — b| = 1
Xi
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Formulation

Support vector machine formulation
(removing the redundant formulation)

w*, b* = arg max 1
b [[wl|

subject to y;(w'x; — b) > 1 (for all training (x;, y;))
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Formulation

Ty MOt convex/concave

But it is easy to come with a convex formulation
w*, b* = arg min 1||W||2
’ w,b 2

subject to yi(w'x; — b) > 1 (for all pairs (x;, y;))
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A bit on convex optimization

General concepts beyond support vector machine formulation
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A bit on convex optimization

General concepts beyond support vector machine formulation

Lagrangian:
L(w, b,A) = S [|w|? > N (1—yiw'xi—b
(W7 > )_ 2||W|| + i }//(W Xj )

L(w, b,\) is a key idea in any constrained optimization

P UNIVERSITY
) of HAWAI'l

16 /19



Primal/dual formulation

Neat property of Lagrangians:
Optimal point
miny, » Maxa>o L(w, b, A) (primal formulation)

Dual formulation (Nash, von Neumann)
maxa>g miny p L(w, b, A) (dual formulation)
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Primal /dual formulation

Neat property of Lagrangians:
Optimal point
miny, p Maxa>o L(w, b, A) (primal formulation)

Dual formulation (Nash, von Neumann)
maxa>o miny p L(w, b, \) (dual formulation)

Incidentally Nash won both the Nobel Prize in Econ and the Abel
Prize
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Primal /dual formulation

For free:

min max L(w, b, A\) > maxmin L(w, b, \)
w,b A>0 A>0 w,b

But equality in many cases

@ in many convex formulations, including our current case
o so one could solve either version

o dual in kernel methods very insightful for explainability
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Dual formulation: 2 key insights

o Setting gradient of L(w, b, ) to 0, optimal w* satisfies
wh = Z AiYiXi
i

Representer theorem: solution w* is linear combination of inputs
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Dual formulation: 2 key insights

o Setting gradient of L(w, b, \) to 0, optimal w* satisfies
wh =) Ay
i

Representer theorem: solution w* is linear combination of inputs

o Finding As
) A1y1
L= T
r/]\ﬂg())(Z)\, > [Alyl )\,,y,,] XX
AnYn

Data only shows up through dot products (XX T)
Crux of Kernel approach to nonlinearity
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