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Brief recap

Linear to non-linear

Support Vector Classification
Ridge Regression

`2 regularization makes it kernelizable

Gaussian process regression
conditional means of Gaussians = ridge regression
though ridge computes mean, this is Bayesian
predictions gaussian (with known variance)
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Complexity

If x1, . . . ,xn are the training points, kernel k(·, ·), need the kernel
Gram matrix: k(x1, x1) k(x1, x2) . . . k(x1, xn)

...
...

...
...

k(xn, x1) k(xn, x2) . . . k(xn, xn)


The above matrix has n2 entries (and we often need to invert
matrices of this size. Complexity is quadratic or worse.
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Deeper look into kernels

In certain cases, we can get to linear complexity in n (training size)

approximate solutions, not exact
NeurIPS Test of Time award for influential papers

Makes large training sets feasible
Kernel methods have many of the “amazing” features neural nets
have

Can often fit any random permutations of labels
... yet do not misuse power and overfit!
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Function positive definiteness

Function k(x, y) is said to be positive (semi-)definite if

for all n
and all x1, . . . ,xn, the Gram matrix is positive semi-definite.

This means that for all vectors w =

w1
...
wn


[
w1 . . . wn

] k(x1, x1) k(x1, x2) . . . k(x1, xn)
...

...
...

...
k(xn, x1) k(xn, x2) . . . k(xn, xn)


w1

...
wn

 ≥ 0

Not enough that all entries of Gram matrix ≥ 0
Any positive (semi-)definite k is allowed to be a kernel
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Making new kernels from old

Linear combinations with non-negative coeffs
if k1 and k2 are two kernels, so is αk1(x, y) + βk2(x, y)

Product of kernels
if k1 and k2 are two kernels, so is k1(x, y)k2(x, y)

If g(x) is any function k(x, y) = g(x)g(y) is a kernel

If k(x, y) is any kernel, so are exp(k(x, y)) and k(f (x), f (y))
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Examples

Radial basis function (for scale parameter s > 0)

k(x, y) = exp

(
−||x− y||2

2s

)

This function is positive semi-definite because

exp

(
−||x− y||2

2s

)
= exp

(
−||x||

2

2s

)
exp

(
−||y||

2

2s

)
exp

(
xT y

s

)
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Examples

Exponential/Laplace kernel

k(x, y) = exp(−||x− y||/λ)

Positive semi-definiteness of this function not trivial
but follows easily from Bochner’s theorem
... as for the whole class of Matern kernels and a host of

others
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Bochner’s Theorem

Need this for two reasons

finding kernels
faster computation
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Bochner’s Theorem

Consider kernels k(x, y) where dependency only via ||x− y||
rbf, Matern
not examples: polynomial

Bochner

k(x− y), x, y ∈ Rd is positive semi-definite iff it is the
(d−dimensional) Fourier transform of a finite positive measure on
Rd (think pdf).
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Fourier transform

Let µ be absolutely continuous wrt to the Lebesgue measure
(ignore if you haven’t heard the terms). Let the pdf of µ be fµ.
Then

F (x− y) =

∫
ν∈Rd

e−j2πν
T (x−y)fµ(ν)dν

is a valid kernel.
we interpret the kernel k(x, y) = F (x− y).
we call fµ the kernel spectral measure
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Bochner’s kernels

Familiar examples:

if measure is normal, radial basis kernel

similarly for Matern kernels

Interestingly, these are also universal
any compactly supported function arbitrarily approximated
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Computational speedups

Bochner’s theorem can also speed up computations (stationary
kernels)

From Bochner’s theorem

k(x, y) = E exp
(
j2πνT (x− y)

)
ν random d−vector ∼ kernel spectral measure fµ(ν)
E denotes expectation
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Random Fourier Features

zν(x) = cos(2πνT x + b), ν ∼ fµ and b uniform

Recall feature map x→ φ(x), k(x, y) = φ(x)Tφ(y)
replace φ(x) with z(x) with same property
yet z is a vector with D coordinates (D small)
zT (x) =

[
zν1(x) , . . . ,zνD (x)

]
k(x, y) = Eνzν(x)T zν(y) ≈ z(x)T z(y)

General recipe: solve primal problem with z(x1), . . . ,z(xn)
linear in n, depends on D (instead of dim of φ)
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