
Kernel methods

Narayana Santhanam

EE 645
Jan 22, 2023

Linear → Non-linear

Two approaches:

Kernel methods

guarantees, well understood
computationally intensive (small data)

Neural networks
less well understood
computationally cheap (large data)

1 / 52

Linear → Non-linear

Two approaches:

Kernel methods
guarantees, well understood

computationally intensive (small data)

Neural networks
less well understood
computationally cheap (large data)

1 / 52

Linear → Non-linear

Two approaches:

Kernel methods
guarantees, well understood
computationally intensive (small data)

Neural networks
less well understood

computationally cheap (large data)

1 / 52

Linear → Non-linear

Two approaches:

Kernel methods
guarantees, well understood
computationally intensive (small data)

Neural networks
less well understood
computationally cheap (large data)

1 / 52

Next couple of weeks

Kernel methods

High level picture
Support Vector classification and regression
Kernel PCA
Random Fourier Futures
Credit risk, Power data

2 / 52

Next couple of weeks

Kernel methods

High level picture

Support Vector classification and regression
Kernel PCA
Random Fourier Futures
Credit risk, Power data

2 / 52

Next couple of weeks

Kernel methods

High level picture
Support Vector classification and regression

Kernel PCA
Random Fourier Futures
Credit risk, Power data

2 / 52

Next couple of weeks

Kernel methods

High level picture
Support Vector classification and regression
Kernel PCA

Random Fourier Futures
Credit risk, Power data

2 / 52

Next couple of weeks

Kernel methods

High level picture
Support Vector classification and regression
Kernel PCA
Random Fourier Futures

Credit risk, Power data

2 / 52

Next couple of weeks

Kernel methods

High level picture
Support Vector classification and regression
Kernel PCA
Random Fourier Futures
Credit risk, Power data

2 / 52

Classification

Linearly separable

3 / 52

Classification

Linearly separable

4 / 52

Classification

Not linearly separable

5 / 52

Classification

Not linearly separable

Boundaries not linear..
but are linear in a higher dimensional space!

6 / 52

Closer look

Principled approach for linear → nonlinear
Powerful, yet generalizes well
Often explainable

at least more than other state of art
New advances increase reach (more data)

but not as much as NN

7 / 52

Stepping back

Linearly separable
Where would you draw a linear classifier?

8 / 52

Stepping back

Not linearly separable
Where would you draw a linear classifier?

Minimum number of mistakes?
infeasible, NP-hard

Instead: variation of ℓ1 loss, sum of margins

9 / 52

Stepping back

Not linearly separable
Where would you draw a linear classifier?

Minimum number of mistakes?

infeasible, NP-hard
Instead: variation of ℓ1 loss, sum of margins

9 / 52

Stepping back

Not linearly separable
Where would you draw a linear classifier?

Minimum number of mistakes?
infeasible, NP-hard

Instead: variation of ℓ1 loss, sum of margins

9 / 52

Stepping back

Not linearly separable
Where would you draw a linear classifier?

Minimum number of mistakes?
infeasible, NP-hard

Instead: variation of ℓ1 loss, sum of margins

9 / 52

Setting up linear classification

Distance of x from a plane wTx− b = 0?

wTx− b

||w||

10 / 52

Setting up linear classification

Distance of x from a plane wTx− b = 0?

wTx− b

||w||

10 / 52

Formulation of Support Vector Classification

Analyze this in some detail

One of the key advantages: interpretability
Comes through formulation

Primal/Dual formulation is a key optimization idea
accelerations of training neural networks
resource allocation/optimization in economics,

urban planning

11 / 52

Formulation of Support Vector Classification

Analyze this in some detail
One of the key advantages: interpretability

Comes through formulation

Primal/Dual formulation is a key optimization idea
accelerations of training neural networks
resource allocation/optimization in economics,

urban planning

11 / 52

Formulation of Support Vector Classification

Analyze this in some detail
One of the key advantages: interpretability

Comes through formulation
Primal/Dual formulation is a key optimization idea

accelerations of training neural networks
resource allocation/optimization in economics,

urban planning

11 / 52

Formulation

Linearly separable points:
Training data:

(x1, y1), (x2, y2), . . . , (xn, yn)

Margin (closest distance from separating boundary)

γ(w, b) = min
xi

|wTxi − b|
||w||

Redundant parameterization scaling w, b by any number does not
change the margin

12 / 52

Formulation

Support vector machine formulation:

w∗, b∗ = argmax
w,b

γ(w, b)

subject to yi (w
Txi − b) ≥ 0 (for all training (xi , yi))

Redundant parameterization: scaling w, b changes nothing

only the directions/intercepts matter

represent by scaling of w, b that ensures

min
xi

|wTxi − b| = 1

13 / 52

Formulation

Support vector machine formulation
(removing the redundant formulation)

w∗, b∗ = argmax
w,b

1

||w||

subject to yi (w
Txi − b) ≥ 1 (for all training (xi , yi))

14 / 52

Formulation

1
||w|| not convex/concave

But it is easy to come with a convex formulation

w∗, b∗ = argmin
w,b

1

2
||w ||2

subject to yi (w
Txi − b) ≥ 1 (for all pairs (xi , yi))

15 / 52

A bit on convex optimization

General concepts beyond support vector machine formulation

Lagrangian:

L(w, b,Λ) =
1

2
||w ||2 +

∑
i

λi

(
1− yi (w

Txi − b)
)

L(w, b,Λ) is a key idea in any constrained optimization

16 / 52

A bit on convex optimization

General concepts beyond support vector machine formulation

Lagrangian:

L(w, b,Λ) =
1

2
||w ||2 +

∑
i

λi

(
1− yi (w

Txi − b)
)

L(w, b,Λ) is a key idea in any constrained optimization

16 / 52

Primal/dual formulation

Neat property of Lagrangians:
Optimal point
minw,b maxΛ≥0 L(w, b,Λ) (primal formulation)

Dual formulation (Nash, von Neumann)
maxΛ≥0minw,b L(w, b,Λ) (dual formulation)

Incidentally Nash won both the Nobel Prize in Econ and the Abel
Prize

17 / 52

Primal/dual formulation

Neat property of Lagrangians:
Optimal point
minw,b maxΛ≥0 L(w, b,Λ) (primal formulation)

Dual formulation (Nash, von Neumann)
maxΛ≥0minw,b L(w, b,Λ) (dual formulation)

Incidentally Nash won both the Nobel Prize in Econ and the Abel
Prize

17 / 52

Primal/dual formulation

For free:
min
w,b

max
Λ≥0

L(w, b,Λ) ≥ max
Λ≥0

min
w,b

L(w, b,Λ)

But equality in many cases

in many convex formulations, including our current case

so one could solve either version

dual in kernel methods very insightful for explainability

18 / 52

Dual formulation: 2 key insights

Setting gradient of L(w, b,Λ) to 0, optimal w∗ satisfies

w∗ =
∑
i

λiyixi

Representer theorem: solution w∗ is linear combination of inputs

Finding Λs

max
Λ≥0

∑
λi −

1

2

[
λ1y1 . . . λnyn

]
XXT

λ1y1
...

λnyn

Data only shows up through dot products (XXT)

Crux of Kernel approach to nonlinearity

19 / 52

Dual formulation: 2 key insights

Setting gradient of L(w, b,Λ) to 0, optimal w∗ satisfies

w∗ =
∑
i

λiyixi

Representer theorem: solution w∗ is linear combination of inputs

Finding Λs

max
Λ≥0

∑
λi −

1

2

[
λ1y1 . . . λnyn

]
XXT

λ1y1
...

λnyn

Data only shows up through dot products (XXT)

Crux of Kernel approach to nonlinearity

19 / 52

What if not linearly separable?

w∗, b∗ = argmin
1

2
||w||2

subject to yi (w
Txi − b) ≥ 1 (for all training (xi , yi))

In this case, no w, b pair will satisfy all constraints
In some cases, yi (w

Txi − b) = 1− ξi for some ξi ≥ 0
If ξi > 1, the point is misclassified

20 / 52

Slack ξi : hinge loss

For each example, yi (w
Txi − b) ≥ 1− ξi (for ξi ≥ 0)

if ξ = 0 then inequality, if ξ > 0 equality

Equivalently, ξi = max(0, 1− yi (w
Txi − b)) (Hinge loss)

21 / 52

Non-linear separable formulation

w∗, b∗ = argmin
1

2
||w||2 + C

∑
ξi

subject to yi (w
Txi − b) ≥ 1− ξi (for all training (xi , yi))

ξ ≥ 0 (or −ξi ≤ 0)

Dual formulation

max
C≥Λ≥0

∑
λi −

1

2

[
λ1y1 . . . λnyn

]
XXT

λ1y1
...

λnyn

22 / 52

Dual formulation: 2 key insights

Setting gradient of L(w, b, {ξi},Λ, {µi}) to 0, optimal w∗

satisfies
w∗ =

∑
i

λiyixi

Representer theorem: solution w∗ is linear combination of inputs

Finding Λs

max
C≥Λ≥0

∑
λi −

1

2

[
λ1y1 . . . λnyn

]
XXT

λ1y1
...

λnyn

Data only shows up through dot products (XXT)

Crux of Kernel approach to nonlinearity

23 / 52

Dual formulation: 2 key insights

Setting gradient of L(w, b, {ξi},Λ, {µi}) to 0, optimal w∗

satisfies
w∗ =

∑
i

λiyixi

Representer theorem: solution w∗ is linear combination of inputs

Finding Λs

max
C≥Λ≥0

∑
λi −

1

2

[
λ1y1 . . . λnyn

]
XXT

λ1y1
...

λnyn

Data only shows up through dot products (XXT)

Crux of Kernel approach to nonlinearity

23 / 52

Visualization

24 / 52

Classification

25 / 52

Support vectors

26 / 52

Support vectors

27 / 52

But how?

Only things that matter:
dot products of test/examples
dot products between examples

Replace xTi xj by a nonlinear function k(xi , xj)
not any nonlinear function, must be chosen properly
if chosen properly k reflects dot product in lifted space

28 / 52

But how?

Only things that matter:
dot products of test/examples
dot products between examples

Replace xTi xj by a nonlinear function k(xi , xj)
not any nonlinear function, must be chosen properly
if chosen properly k reflects dot product in lifted space

28 / 52

Generalization: informal

Informally, quantify quality of a SVC by proportion of support
vectors
Cross validation

Training sample n, k support vectors
Leave one out cross validation

Train on n − 1, validate on remaining
If training set has all k support vectors, no error on test
Average over all train/validate sets
Estimated generalization error: k/n

29 / 52

Generalization: informal

Informally, quantify quality of a SVC by proportion of support
vectors
Cross validation

Training sample n, k support vectors
Leave one out cross validation

Train on n − 1, validate on remaining
If training set has all k support vectors, no error on test
Average over all train/validate sets
Estimated generalization error: k/n

29 / 52

Generalization: informal

Informally, quantify quality of a SVC by proportion of support
vectors
Cross validation

Training sample n, k support vectors
Leave one out cross validation

Train on n − 1, validate on remaining

If training set has all k support vectors, no error on test
Average over all train/validate sets
Estimated generalization error: k/n

29 / 52

Generalization: informal

Informally, quantify quality of a SVC by proportion of support
vectors
Cross validation

Training sample n, k support vectors
Leave one out cross validation

Train on n − 1, validate on remaining
If training set has all k support vectors, no error on test

Average over all train/validate sets
Estimated generalization error: k/n

29 / 52

Generalization: informal

Informally, quantify quality of a SVC by proportion of support
vectors
Cross validation

Training sample n, k support vectors
Leave one out cross validation

Train on n − 1, validate on remaining
If training set has all k support vectors, no error on test
Average over all train/validate sets
Estimated generalization error: k/n

29 / 52

Linear to nonlinear

30 / 52

Classification: nonlinear

31 / 52

Support vectors: nonlinear

32 / 52

Support vectors: nonlinear

33 / 52

Introducing nonlinearities

Recall: for prediction on test z
only need xTi xj , for every pair of training examples

quadratic complexity in training set!
zTxi for every training example

Key idea: Replace xTi xj with a kernel function k(xi , xj)

34 / 52

Understanding kernel functions

35 / 52

Understanding kernel functions

36 / 52

Lifting training points

Lift x → ϕ(x)
In the example above:
(x1, x2) → (x21 , x

2
2 ,
√
2x1x2,

√
2x1,

√
2x2, 1)

Linear classifier in the higher dimension
Since transformation nonlinear

linear boundaries in higher dimension look non-linear

37 / 52

Lifting training points

Lift x → ϕ(x)
In the example above:
(x1, x2) → (x21 , x

2
2 ,
√
2x1x2,

√
2x1,

√
2x2, 1)

Linear classifier in the higher dimension
Since transformation nonlinear

linear boundaries in higher dimension look non-linear

37 / 52

Higher dimension space

Doesn’t computation scale with the dimension of higher space?

Kernels to the rescue:
No, ϕ(x)Tϕ(y) = k(x, y)
Dimension of ϕ(x) doesn’t matter!

38 / 52

What does the higher dimensional space look like?

Reproducing Kernel Hilbert spaces

Abstract spaces that generalize Euclidean spaces
each point a function (not necessarily finite dimensional)
Dot product, but may look very different from vectors
Each “function” has a length derived from the dot product
“Smooth spaces”
Shorter “length” ↔ smoother function

39 / 52

What does the higher dimensional space look like?

Reproducing Kernel Hilbert spaces
Abstract spaces that generalize Euclidean spaces

each point a function (not necessarily finite dimensional)
Dot product, but may look very different from vectors
Each “function” has a length derived from the dot product
“Smooth spaces”
Shorter “length” ↔ smoother function

39 / 52

What does the higher dimensional space look like?

Reproducing Kernel Hilbert spaces
Abstract spaces that generalize Euclidean spaces
each point a function (not necessarily finite dimensional)

Dot product, but may look very different from vectors
Each “function” has a length derived from the dot product
“Smooth spaces”
Shorter “length” ↔ smoother function

39 / 52

What does the higher dimensional space look like?

Reproducing Kernel Hilbert spaces
Abstract spaces that generalize Euclidean spaces
each point a function (not necessarily finite dimensional)
Dot product, but may look very different from vectors

Each “function” has a length derived from the dot product
“Smooth spaces”
Shorter “length” ↔ smoother function

39 / 52

What does the higher dimensional space look like?

Reproducing Kernel Hilbert spaces
Abstract spaces that generalize Euclidean spaces
each point a function (not necessarily finite dimensional)
Dot product, but may look very different from vectors
Each “function” has a length derived from the dot product

“Smooth spaces”
Shorter “length” ↔ smoother function

39 / 52

What does the higher dimensional space look like?

Reproducing Kernel Hilbert spaces
Abstract spaces that generalize Euclidean spaces
each point a function (not necessarily finite dimensional)
Dot product, but may look very different from vectors
Each “function” has a length derived from the dot product
“Smooth spaces”

Shorter “length” ↔ smoother function

39 / 52

What does the higher dimensional space look like?

Reproducing Kernel Hilbert spaces
Abstract spaces that generalize Euclidean spaces
each point a function (not necessarily finite dimensional)
Dot product, but may look very different from vectors
Each “function” has a length derived from the dot product
“Smooth spaces”
Shorter “length” ↔ smoother function

39 / 52

Non linear SVC in RKHS terms

Map x → fx, where fx is a point in a RKHS

Prediction with fw on test point fz: ⟨fw, fz⟩ − b

Find the function that minimizes the hinge loss
subject to a smoothness constraint (||fw|| < T)

40 / 52

Ridge regression

Host of other problems that lend themselves to kernel methods

LLS: Given training X and target y, find

argmin
w

||y − Xw||2

Optimal solution is
ŵ = (XTX)−1XTy

41 / 52

Ridge regression

Host of other problems that lend themselves to kernel methods

Regularized LS: Given training X and target y, find

argmin
w

(
||y − Xw||2 + λ||w||2

)
Optimal solution is

ŵ = (XTX + λI)−1XTy

42 / 52

Ridge regression

Regularized LS: Given training X and target y, find

argmin
w

(
||y − Xw||2 + λ||w||2

)
Optimal solution is

ŵ = (XTX + λI)−1XTy

Prediction is

zT ŵ = zT (XTX + λI)−1XTy = zTXT (XXT + λI)−1y

Once again
zTXT : dot product of z with training examples
XXT pairwise dot products between examples

Replace dot products xTi xj with a kernel k(xi , xj)

43 / 52

Kernel ridge regression

Replace dot products xTi xj with k(xi , xj)

Representer Theorem still holds in the abstract RKHS:
ϕ(w) =

∑
i λiyiϕ(xi)

Prediction is

k(z, ŵ = k(z,X), (k(X ,X) + λI)−1y

where k(z,X) =
[
k(z, x1) . . . k(z, xn)

]
and

k(X ,X) =

k(x1, x1) . . . k(x1, xn)
k(x2, x1) . . . k(x2, xn)

...
...

...
k(xn, x1) . . . k(xn, xn)

44 / 52

Kernels?

Popular kernels:
Polynomial: k(x, x′) = (xTx′ + c)d

Hyperparameters c , d
RKHS(d , c) ⊂ RKHS(d + 1, c ′) (for appropriate c , c ′)

Radial Basis function:
Hyperparameter s (scale factor)

k(x, x′) = exp
(
− ||x−x′||2

2s

)
RKHS(s) ⊂ RKHS(s ′) if s ′ < s

Rule of thumb: kernel with rich enough RKHS
specific kernels can incorporate structure (eg. periodicity)

45 / 52

Kernels

More on kernels, deeper insights into non-linear features in a
separate optional video

When is a bivariate function k(x, x′) a valid kernel?
It must be positive semi-definite: namely for any n and any
x1, . . . ,xn,

k(X ,X) =

k(x1, x1) . . . k(x1, xn)
k(x2, x1) . . . k(x2, xn)

...
...

...
k(xn, x1) . . . k(xn, xn)

must be positive semi-definite

46 / 52

Positive semi-definite

An n × n A is positive semi-definite (definite) if for all w ∈ Rn,
wTAw ≥ 0. (wTAw > 0)
Equivalent: All eigenvalues of A must be ≥ 0 (> 0)
Entries need to be all-positive, all-positive matrices are not positive
definite[
3 −1
−1 3

]
is positive definite[

3 1
1 3

]
is not.

47 / 52

Credit risk monitoring: case study

Fair-Isaac Corporation (FICO) models credit risk
FICO score you are familiar with

Start linear, modify to make non-linear
Original/base methods

Fisher Discriminant
Logistic Regression

Note: both are lienar methods
Not an accident: need explainability

48 / 52

Credit risk monitoring: case study

Fair-Isaac Corporation (FICO) models credit risk
FICO score you are familiar with

Start linear, modify to make non-linear
Original/base methods

Fisher Discriminant
Logistic Regression

Note: both are lienar methods
Not an accident: need explainability

48 / 52

Credit risk monitoring: case study

Fair-Isaac Corporation (FICO) models credit risk
FICO score you are familiar with

Start linear, modify to make non-linear
Original/base methods

Fisher Discriminant
Logistic Regression

Note: both are lienar methods
Not an accident: need explainability

48 / 52

Fisher discriminant for credit risk

Generally FD works when each class can be normally distributed
Perhaps not a bad assumption in this case

FD is a linear method
Manually make up non-linear functions of features
Done with lot of background on econometrics models
Huge part of effort into feature engineering

49 / 52

Logistic Regression for credit risk

Another linear approach, but with different results
Usually works well when we have the correct features

Maximum entropy: given the features observed, find generative
model for each class that makes no assumptions other than that
the model matches the observed moments of features

Not even implicit assumptions are made

Again, feature engineering is the key to success, and built on
insights and analysis into credit risk

50 / 52

Support vector approach

Instead of feature engineering, look at a rich abstract space of
features (RKHS obtained via a kernel)
Domain knowledge is not assumed

but you will see how to augment results with it
We will work with credit risk data from Kaggle

link in discord

51 / 52

Miniproject

Build a model to predict risk using
Base SVM approach (choose kernel)

Use different margins for positive/negatives
Bayesian interpretations (paper provided)

Find out the econometric features used
Logistic Regression using the above features

Compare the two
We will work together (including me!)

52 / 52

