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High dimensional Gaussian

Multivariate Gaussian

f (x) =
1

(2π)
d
2 |Σ|

1
2

exp
(
−(x− µ)TΣ−1(x− µ)

)
µ = EX (mean)
Σ = E(X − µ)(X − µ)T (covariance)

Where is the probability concentrated?
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Concentration of measure

U ∼ N(µ, σ2I )

Thin shell with width
√
d

For all δ > 0,

P

(
||U − µ||2 ≤ σ2

(
d + 2

√
d ln

1

δ

))
≥ 1− δ

and

P

(
||U − µ||2 ≥ σ2

(
d − 2

√
d ln

1

δ

))
≥ 1− δ
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Johnson Lindenstrauss Lemma

Random projections preserve pairwise distances

For any ε and integer n, let k = 8 ln n
ε2

. For all z1, . . . ,zn ∈ Rd , there

exists f : Rd → Rk such that for all pairs zi , zj

||f (zi )− f (zj)||2 ∈ (1± ε)||zi − zj ||2

These f can simply be random projections!
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Applications of JL lemma

Regression in high dimensions

Some clustering problems
not always: GMM faster

Sketching and streaming algorithms
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Learning mixtures of Gaussians

Cluster n points in Rd into k clusters

Powerful and flexible model: Gaussian mixtures
X ∼

∑k
i=1 πiN (µi ,Σk)

Note: even common covariance Σk = Σ versatile
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Clustering in low dimensions, few clusters

k−means
choose centers µ1, . . . ,µk at random
assign each example to nearest mean
update centers and repeat prior step till convergence

Soft version: Expectation Maximization
Fits most likely GMM iteratively
For Gaussians, soft version of k−means
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In high dimensions

Recall: most probability in N (µ, σ2I ) close to σ
√
d .

P

(
||X − µ||2 ≥ σ2

(
d − 2

√
d ln

1

δ

))
≥ 1− δ

Probability of finding a point near µ is exp(−O(d)

Need exp(O(d) points to even have a point ≤ 1
2σ
√
d!

Most plausible data sizes: “few scattered specks of dust in an
enormous void” (Dasgupta ’99)
Low dim algorithms need exponential in d examples
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Key idea: Project into few dimensions

Linear projections: the projections are Gaussian too!

PCA?
Can easily find cases where PCA will not work
it is possible PCA collapses components of the mixture on

top of each other (or nearly so)

For clustering, try Johnson-Lindenstrauss:
1
ε2

log n projections retain all pairwise distances
projected space still too large

exponential in 1
ε2

log n is n
1
ε2
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Key idea: Project into few dimensions

Don’t worry about retaining all pairwise distances
O(log k) projections
retain distances between means
push points closer to mean in each cluster!

Series of recent results on several common examples in the low-d
space, how they recover parameters in high-d space
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Distance between means

If ||µ1 − µ2|| > Ω(d1/4), should expect to separate out clusters
Note that in this regime, the spheres are not disjoint

Yet we should expect all points in one cluster to be closer to each
other than points in other clusters
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Why Gaussian mixtures

In principle, GMs can model any continuous distribution

Two particular examples (projects):
Asset returns (see paper on discord)
fMRI (see paper on discord)
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Gaussian random matrices

If A is a k × n matrix, entries iid Gaussian
rows, cols independently chosen Gaussian multivariate
satisfy something called the Restricted isometry property
all small subset of columns approximately orthogonal

Key property used in Compressed Sensing
extends the Shannon-Nyquist theorem
used to shorten MRI acquisition on conventional equipment,

network tomography, radio astronomy and optical interferometry
(aperture synthesis)
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Compressed Sensing

If x∗ is a S-sparse signal in Rn

y = Ax∗ (ie k linear measurements of x)

If k is very small, can we still find x∗?
Compare with Shannon-Nyquist sampling
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Convex relaxation

y = Ax is underdetermined

infinite solutions
which solution to choose?

Finding sparsest solution too hard
NP-hard

Compressed sensing to the rescue
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Convex relaxation

Recall y = Ax∗ where x∗ ∈ Rn is S-sparse
A: k × n random Gaussian matrix

Solve x̂ = arg min ||x||1 such that Ax = y

Can be solved fast
Solution will coincide with the sparsest x provided

A satisfies the restricted isometry property
k > S log n
Another project idea
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Ridge and Lasso

Already noted, brief review
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Matrix Completion

This will be our segue into next topic: NLP
Also a chance to learn about singular values
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Matrix completion

M is a matrix of user preferences
(Netflix challenge 480189× 17770, today much larger)

user i , movie j , rating in position Mij

most observations unknown
observations in set Ω

Complete M using Ω

no reason this is this even possible!
Reminiscent of compressed sensing

infering sparse signal with very few measurements
equivalent of sparsity?
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“Sparsity” in matrices

Rank of a matrix, Singular Value Decomposition
Rank 1 matrices
General rank k matrices
Singular value decomposition
Outer product expression
Autoencoders
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Singular value decomposition/Genres

M = UΣV T

Rank = number of non-zero singular values
Low rank r : few (r) singular values
M = σ1u1vT1 + · · ·+ σrurvTr
ui : how much does each person genre i? vi : how would a person
who likes genre i like each movie?
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Matrix completion

Works when Ω is chosen uniformly at random

The rank of M is low

Singular value are incoherent with the standard basis
projecting the standard basis to the subspace
of singular vectors
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Matrix completion: nuclear norm

X = arg min ||X ||s
such that Xij = Mij , ij ∈ Ω where ||X ||s is the nuclear norm
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