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Abstract—AI agents based on multimodal large language
models (LLMs) are expected to revolutionize human-computer
interaction and offer more personalized assistant services across
various domains like healthcare, education, manufacturing, and
entertainment. Deploying LLM agents in 6G networks enables
users to access previously expensive Al assistant services via mo-
bile devices democratically, thereby reducing interaction latency
and better preserving user privacy. Nevertheless, the limited
capacity of mobile devices constrains the effectiveness of de-
ploying and executing local LLLMs, which necessitates offloading
complex tasks to global LLMs running on edge servers during
long-horizon interactions. In this article, we propose a split
learning system for LLM agents in 6G networks leveraging the
collaboration between mobile devices and edge servers, where
multiple LLMs with different roles are distributed across mobile
devices and edge servers to perform user-agent interactive tasks
collaboratively. In the proposed system, LLM agents are split into
perception, grounding, and alignment modules, facilitating inter-
module communications to meet extended user requirements
on 6G network functions, including integrated sensing and
communication, digital twins, and task-oriented communications.
Furthermore, we introduce a novel model caching algorithm for
LLMs within the proposed system to improve model utilization in
context, thus reducing network costs of the collaborative mobile
and edge LLM agents.

Index Terms—6G networks, Al agents, integrated sensing and
communication, digital twins, task-oriented communications

I. INTRODUCTION

Al agents, designed to integrate Al models into everyday
services as personal assistants to humans, have become a
pivotal element in advancing towards artificial general intel-
ligence (AGI) [[1], [2]]. Al agents powered by large language
models (LLMs), i.e., LLM agents, possess the capability to fol-
low user instructions, observe environments, make decisions,
and execute actions at a human-equivalent level. Therefore,
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LLM agents can proactively provide users with recommenda-
tions for final decisions by understanding and remembering
cross-application user intentions and behaviors. Particularly,
Al agents observe surrounding environments by processing
information in various modalities from sensors, leveraging
the versatility of multimodal LLMs [3]. In addition, LLM
agents can solve complex tasks by grounding the plan of
action to achieve their missions through reasoning, memory,
and verification. After the alignment between LLM agents and
humans, agents can attain human-like intelligence to provide
recommendations to users with text, tools, and embodied
actions that are consistent with human values.

Although the deployment of LLM agents on mobile devices
in 6G networks allows democratizing access to services cur-
rently considered prohibitively expensive at cloud data centers,
several issues remain in implementing the LLM agents for
complex, multi-round interaction agent services [4], [5]]. For
mobile devices with limited capacities, running Al models of
agents, which is both computation- and memory-intensive, is
challenging for supporting the long-term execution of LLMs.
In addition, these limitations are further exacerbated by the
restricted context windows of LLMs, hindering LLM agents
from performing long-term and complex interactions, such
as perception, reasoning, and coding, which consume con-
siderable available context resources [6]. To address these
challenges, a split learning system based on collaborative end-
edge-cloud computing, which aims at partitioning LLM agents
into mobile and edge agents, emerges as a viable solution. In
this system, mobile LLM agents, operating local LLMs (0-10B
parameters, e.g., LLAMA-7B) on mobile devices, can handle
real-time, direct perception and alignment tasks. Meanwhile,
edge LLM agents, hosting global LLMs, (>10B parameters,
e.g., GPT-3) on edge servers, can utilize global information
and historical memory to help mobile LLM agents perform
complex tasks.

There are several advantages to partitioning LLM agents
into mobile and edge agents in 6G networks. First, flexible
deployment of LLM agents can be supported by heterogeneous
devices with different locations, capabilities, and contextual
adaptability. Specifically, mobile LLM agents with proper
local LLMs can operate effectively with their computing
capabilities regardless of their locations and user scenarios.
Second, long-horizon collaboration can be enabled across mul-
tiple mobile devices by bridging the integration between low-
level operational plans of local LLMs and high-level strategic
plans of global LLMs. Third, mobile LLM agents exhibit
enhanced adaptability in dynamic open-ended environments.



For instance, mobile LLM agents can understand instructions
using local LLMs and then adjust their actions based on imme-
diate environmental feedback for real-time responsiveness and
relevance during their interactions with physical environments.

In this article, we propose a split learning system of LLM
agents consisting of mobile LLM agents and edge LLM agents
in 6G networks, which is democratic, flexible, and long-
horizon for running sustainable Al agents in open-ended envi-
ronments. First, we introduce the basic concept of Al agents
and introduce the processes of constructing LLM agents via
collaborative end-edge-cloud computing. Secondly, we discuss
three main issues in developing LLM agents in 6G networks,
including multimodal perception, interactive grounding, and
alignment with humans. Thirdly, we investigate a real-world
application that leverages mobile and edge LLM agents to
generate accident reports collaboratively. At an accident site,
vehicles can employ mobile LLM agents to observe the
surrounding scene of a car accident and generate their local
environmental descriptions. By sending these descriptions to
edge servers, edge LLM agents can use global observations to
deduce and offer more detailed and precise plans for vehicles.
Finally, the mobile LLM agents can generate text responses,
functional call requests, and embodied actions based on the
global plan. In addition, we propose a metric called age of
thought (AoT) to assess the significance of thoughts, i.e., the
intermediate steps generated by LLMs, during the reasoning
and planning processes of edge LLM agents. This metric
emphasizes that older thoughts hold less importance and thus
can ensure the high performance of cached models. Based on
this metric, we introduce the Least Age-of-Thought (LAoT)
model caching algorithm, which evicts global models that have
the least impactful and relevant thoughts, and thus reduces
the grounding cost in terms of latency, resource consumption,
and performance loss for serving edge LLM agents in 6G
networks. Overall, our main contribution can be summarized
as follows.

o We propose a split learning system for LLM agents in 6G
networks, which aims to provide democratic Al assistant
services via the collaboration of mobile and edge LLM
agents over end-edge-cloud computing.

o During the integration of 6G networks and LLM agents,
we discuss several major issues, including integrated
sensing and communication for multimodal perception,
digital twins for grounding decisions, and task-oriented
communications for the alignment of agents.

« We propose a new optimization framework in the system,
i.e., model caching for Al agents, which aims at maxi-
mizing the in-context learning capabilities of LLM agents
while reducing the network costs of serving mobile and
edge LLM agents.

II. COLLABORATIVE END-EDGE-CLOUD COMPUTING FOR
LLM AGENTS IN 6G NETWORKS

As a pivotal stride towards achieving AGI, Al agents are
the key computational entities that can proactively perceive
user instructions, observe the environment, ground decisions,
and perform human-like actions [2]. In 6G networks, Al

agents are developed to execute intricate tasks collaboratively,
from managing networks to acting as personal assistants for
humans. According to the difference in fundamental working
mechanisms, there are two major categories of Al agents, i.e.,
reinforcement learning (RL) agents and LLM agents, which
are discussed below.

A. Categories of Al Agents

1) RL Agents: Utilizing RL algorithms to observe states,
make decisions, and take actions in an environment, RL agents
learn through trial and error, by receiving feedback as rewards
or penalties as a result of their actions. They aim to maxi-
mize their cumulative reward over time by learning optimal
policies. For example, in communications and networking,
RL agents can make decisions for dynamic network access,
transmit power control, wireless caching, and data offloading
locally to maximize network performance under uncertain
network environments. Specifically, RL agents formulate the
communication and networking environment into a Markov
decision process (MDP) consisting of states, actions, transition
probabilities, and rewards. However, although RL agents learn
to make decisions for network access and management [2],
they cannot interact with humans and other agents using texts
in open-ended environments which limits their potential to
offer more diverse services that require understanding and
responding to human instructions.

2) LLM Agents: To achieve human-level intelligence, LLM
agents build upon versatile and powerful LLMs that have
demonstrated remarkable capabilities in few-shot and zero-
shot environment perception and instruction understanding [1]],
[2]. In addition to the decision-making capabilities of RL
agents, LLM agents can interact with the environment through
texts, API tools, and embodied actions continuously while
gradually improving their performance during the interaction.
Meanwhile, pre-training on large-scale datasets elicits emerg-
ing abilities of LLMs, allowing them to tackle various down-
stream tasks related to data management, question answering,
route planning, and scientific inquiries. Furthermore, equipped
with memory, reasoning, planning, and tool capabilities, LLM
agents can not only make decisions for network environments
but also leverage language understanding and employ tools
such as the Internet and databases for tackling complex control
tasks. Compared with the generalization of RL agents, the
role-playing capability of LLM agents allows them to serve
specific roles while handling different tasks. For example,
LLM agents can act as experiment assistants, automating the
design, planning, and execution of scientific experiments based
on human-crafted instructions. However, textual instructions
are usually not sufficient for LLM agents to perceive the entire
environment in a realistic setting.

To enhance LLMs with multi-sensory capabilities, such
as visual and audio understanding, multimodal LLMs [3],
like GPT-4V(ision), are introduced for agents to perceive
and process inputs from multiple modalities, including tactile
feedback, gestures, Inertial Measurement Units (IMUs) motion
sensor data, and 3D maps. For visual input, multimodal LLMs
can be leveraged to generate a description for the current
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Fig. 1: The split learning system of mobile and edge LLM agents over collaborative end-edge-cloud computing.

environment, where they can produce multimodal descriptions,
such as text, audio, and images, which enable better accessibil-
ity for visually impaired individuals and improve positioning
capabilities. Specifically, multimodal LLM agents can use a
pre-trained encoder to convert signals from different modalities
into a common textual representation, allowing for reasoning
across modalities [7]].

B. Construction of Mobile Edge-empowered Agents

As illustrated in Fig. [T] the construction of LLM agents
in collaborative end-edge-cloud computing consists of three
main processes, namely, mobile LLM agent execution, edge
LLM agent execution, and inter-agent communication between
mobile agents and edge agents to update information and
assign tasks.

1) Mobile LLM Agent Execution: Initially, each user down-
loads tiny local LLMs (0-10B), e.g., LLAMA-7B, to its mobile
device from edge servers via radio access networks (RANs)
for personalized initialization. During initialization, users can
configure mobile LLM agents with personal profiles such as
age, gender, and career, which agents use to tailor their inter-
actions and responses with specific roles. In addition, mobile
LLM agents can leverage contextual initialization based on
the current situation by processing and analyzing historical
interactions. There are two major methods for LLM agents to
perceive environments, i.e., human instruction and sensing. On
the one hand, human instructions are given through interactive
dialogues between humans and LLM agents. On the other
hand, LLM agents can perceive the physical environment,
which provides multimodal sensory inputs from interacting
objects, including visual, auditory, and spatial data.

To process the received instruction and multimodal sensing
data, mobile LLM agents can utilize pre-trained components,

such as modality encoders, word embedding layers, and pro-
jection layers, to combine multi-sensory inputs. Each modality
encoder is specific to one modality, such as CLIP for images,
CLAP for audio signals, IMU2CLIP for IMU motion sensor,
and Intervideo for videos [§]]. In mobile devices, multiple
encoders process and combine the multimodal input data and
then project the output into the text token embedding space
of local LLMs. To process human instructions, the word
embedding layer is a crucial component that maps words
or tokens into a continuous vector space, capturing semantic
relationships between them, and helping in understanding user-
specific instructions. In mobile Al agents, due to limited
capacities in mobile devices, tiny local LLMs with a limited
amount of parameters can generate real-time responses based
on local perception but cannot tackle complex tasks that
require comprehensive consideration and generalization.

2) Global Agent Execution: In edge servers, edge LLM
agents with huge global LLMs (>10B), e.g., GPT3, can
leverage long-term memory, reasoning, and planning modules
to enhance the quality of responses with global information
and understanding of environments. Historical interactions of
mobile LLM agents can be stored as long-term memory in
vector databases through memory embedding layers. Based on
the long-term memory from mobile LLM agents, edge LLM
agents can use retrieval-augmented generation (RAG) to output
responses with better performance and consistency [9]]. In
addition, edge LLM agents can utilize chain-of-thought (CoT)
reasoning to improve the performance in complex tasks [[10].
When tackling complex tasks, edge LLM agents using CoT
start by employing various reasoning paths to deduce potential
answers, considering that each complex problem has multiple
ways of thinking. This way, edge LLM agents can adapt to
unfamiliar scenarios through knowledge generalization and



transfer abilities inherent in global LLMs. Furthermore, edge
LLM agents can leverage self-reflection to verify reasoning
paths, gaining more accurate results of their actions and
making better decisions for future behaviors.

C. Inter-agent Communication between Local and Edge
Agents

When mobile LLM agents are incapable of accomplish-
ing complex tasks, they can offload the intermediate re-
sults, including local perceptions and user intentions, to edge
LLM agents equipped with huge global LLMs and global
information for remote execution. Mobile LLM agents can
transmit intermediate results, such as text or other embed-
dings, through inter-agent communication over RANs. Due
to limited bandwidth and uncertain wireless channels, mobile
LLM agents need to optimize the size of the transmitted
content, i.e., intermediate inference results of local LLMs, and
configure communication parameters for successful offloading,
e.g., the transmit power and the chosen channel. Based on
the responses and decision results generated by edge LLM
agents, mobile LLM agents adapt global general plans to the
local specific plans to interact with users and the environments.
After understanding the locally specific plans using local tiny
LLMs, mobile LLM agents generate responses, use API tools,
and perform embodied actions locally using their actuation
modules.

III. ISAC FOR WIRELESS PERCEPTION: UBIQUITOUS AND
ADAPTABILITY

To run LLM agents efficiently in 6G networks with ubig-
uitous low-end devices, mobile LLM agents can perceive
user instructions and sense environments for modeling and
understanding the current situation. In addition, to improve
adaptability and generalization, mobile LLM agents need to
offload computation-intensive and intractable tasks to edge
LLM agents for remote execution. Therefore, mobile LLM
agents need to collect and extract information from noisy
observations and communicate with edge servers to transfer
information, which requires the implementation of integrated
sensing and communication (ISAC) by utilizing the wireless
communication infrastructure.

1) Environmental Perception: In multi-functional 6G net-
works, mobile LLM agents can autonomously perceive the
surrounding environment using equipped sensors [7]], which
consume network resources for supporting the sensing func-
tionality. By integrating basic perceptual abilities such as
vision, text, and light sensitivity, LLM agents can develop
various user-friendly perception modules [11]. For example,
LLM agents in mobile devices can perceive more complex user
inputs, such as eye-tracking, body motion capture, and even
brainwave signals in brain-computer interaction. Furthermore,
LLM agents in vehicular networks can be equipped with Lidar,
GPS, and IMUs, allowing them to perceive location-based data
for vehicles and mobile users.

2) Human-language Instruction: During the interaction be-
tween users and agents, text instructions can be given to
mobile LLM agents by providing them with explicit re-
quests as well as implied values and intentions. Mobile LLM
agents can understand implicit meanings within textual input
based on contextual interaction with users, thanks to their
short-term memory. After processing through local LLMs,
mobile LLM agents can respond with answers in human
language. Additionally, users can also provide instructions via
audio, which contains environmental information compared
to text [7|]. Handling audio input involves leveraging existing
models, cascading paradigms, and integrating audio with other
modalities to enhance agents’ perception and understanding of
the environment.

3) Inter-agent Interactions: In the proposed system, ubig-
uitous interaction between mobile and edge LLM agents is
crucial for offloading intermediate results, receiving feedback,
interactive reasoning, and self-reflection over RANs [6]. Dur-
ing collaboration between mobile and edge agents, they need
to continuously communicate with each other with messages
in text or other embedded formats in a noisy environment.
Therefore, this communication process usually consumes a
large amount of bandwidth and network resources for long-
term and multimodal interactions.

For the wireless perception of LLM agents in multi-
functional 6G networks, ISAC is promising to improve spectral
and energy efficiencies for mobile LLM agents to collect infor-
mation from environments and transmit intermediate results to
edge LLM agents simultaneously. For example, mobile LLM
agents in vehicles need to perform radar sensing and transmit
the perception results to edge LLM agents simultaneously.
By utilizing network resources more efficiently for sensing
and communication, ubiquitous LLM agents can be deployed
in wireless environments and become more adaptable to a
dynamic and open-ended world.

IV. DIGITAL TWINS FOR WIRELESS GROUNDING:
RELIABILITY AND CONSISTENCY

For grounding the responses and actions, mobile LLM
agents maintain digital twins (DTs) at the edge servers to
interactively perform retrieval-augmented generation (RAG),
reasoning and planning, and reflection with edge LLM agents
in 6G networks with hyper reliable and low-latency commu-
nication. DTs of mobile LLM agents are created as digital
replicas of physical entities with perceived data and can
help to perform global grounding with internal memory and
external knowledge. Through continuously updating external
observation and internal reasoning results, DTs of mobile
LLM agents can be created for real-time monitoring, analysis,
and optimization of the decisions of mobile agents while
performing complex tasks.

1) Memory and Retrieval-Augmented Generation: In the
proposed system, mobile LLM agents maintain a short-term
memory while global agents maintain a long-term memory
for grounding agents’ responses and actions. In mobile LLM
agents, the short-term memory is collected through various
mechanisms, such as in-context learning, maintaining internal



states, utilizing scene descriptions or environment feedback,
and generating task plans. Additionally, short-term memory in
mobile LLM agents can be converted to long-term memory
by leveraging external storage resources in edge servers, such
as vector databases, that allow rapid querying and retrieval of
information as needed. Based on the long-term memory, edge
LLM agents can perform RAG [9] to improve consistency
in generation by using a retrieval model to retrieve relevant
information from a knowledge base or a set of reference
documents and then incorporating this retrieved information
into the generation process. In this way, by processing re-
trieved content using global LLMs, RAG can be leveraged in
complex and long-horizon tasks using specialized knowledge,
up-to-date information, and customizable definitions for better
performance and consistency. Specifically, edge LLM agents
can access past responses of mobile LLM agents to ensure
consistent collaboration.

2) Reasoning and Planning: Edge LLM agents can tackle
complex tasks by decomposing them into sequential steps and
sub-tasks to output accurate responses. To perform intricate
reasoning, CoT [10] involving a step-by-step reasoning process
along a single path can improve the reliability and inter-
pretability of LLMs decisions. Specifically, edge LLM agents
have the ability to use CoT to break down complex tasks and
offer step-by-step instructions for mobile LLM agents to com-
plete individual tasks. In addition, self-consistent CoT (CoT-
SC) is proposed to improve performance of reasoning tasks
by aggregating multiple language model outputs and selecting
the most consistent answer through a majority vote. To extend
CoT, tree-of-thoughts (ToT), a proposed extension of CoT that
formulates thought units into a tree structure, allows LLMs to
explore coherent thought units as intermediate steps, enabling
better problem-solving and planning capabilities. Moreover,
graph-of-thoughts (GoT) is a static structure that specifies the
graph decomposition of a given task in the CoT paradigm. It
prescribes the transformations to be applied to language model
thoughts, along with their order and dependencies. Although
these step-by-step reasoning and planning mechanisms allow
for multiple choices at each step and mimic human thinking,
they might request more computing resources from edge
servers to generate the intermediate results compared with
outputting the results directly.

3) Verification and Reflection: To ensure the correctness
of the reasoning process before final response generation,
LLM agents can leverage verification reflection to validate the
correctness of each step in the CoT process. For example,
SelfCheck [2]] is a zero-shot checking scheme for LLMs that
aims to improve question-answering accuracy by identifying
errors in the LLM’s reasoning process. It works as a step-by-
step checker, individually checking each step in the LLM’s
reasoning process based on the available context. Using con-
fidence scores as weights, SelfCheck allows for improved
question-answering accuracy by focusing on the most accurate
answer. Therefore, LLM agents can independently summarize
and infer more abstract, complex, and high-level information.

Therefore, there should be a tradeoff between the perfor-
mance of grounding modules and the computing resources
consumed during the grounding processes. For inter-agent

grounding, mobile and edge LLM agents can leverage their
own self-correction capabilities to improve the accuracy of
final decisions leveraging computing resources in mobile
devices and edge servers. Moreover, inter-agent grounding
requires additional networking resources to transmit correction
results between mobile and edge LLM agents for cross-
verification for grounding the actions of LLM agents.

V. TASK-ORIENTED COMMUNICATIONS FOR WIRELESS
ALIGNMENT: TRUSTWORTHY AND GENERALIZABILITY

In 6G networks with limited bandwidth resources, task-
oriented communications [12] refer to a communication ap-
proach where the performance is measured based on the
success level of achieving a sequence of application-related
tasks, rather than traditional metrics such as data rate or
wireless link reliability. The alignment of LLM agents in 6G
networks offering ubiquitous connectivity can be regarded as a
type of task-oriented communication where LLM agents can
leverage the massive resources of mobile devices and edge
servers to achieve their alignment goals. For instance, mobile
LLM agents are the data destinations of global general plans
from edge LLM agents to generate texts, call API functions,
and perform embodied actions. In addition, feedback from
humans and mobile LLM agents can be collected as datasets
for supervised fine-tuning, reinforcement learning from human
feedback (RLHF), and direct preference optimization (DPO)
to regularize global LLMs. Beyond data-oriented communi-
cations, the accomplishment of alignment between mobile
and edge LLM agents and humans in view of semantics is
directly linked to task-oriented communication performance
and strategies that wireless users and mobile and edge LLM
agents can provide real-time evaluation and feedback.

1) Text Responses: Since LLMs are pre-trained on large-
scale datasets with biased data, a mismatch or distribution shift
between the training and test data can cause LLMs to generate
incorrect information, known as hallucination [[13]]. However,
to ensure that mobile and edge LLLM agents align with human
intentions and preferences, the system needs to reduce the
likelihood of generating harmful outputs and improve usability
by better following human instructions. For instance, Ope-
nAl (https://openai.com/blog/introducing-superalignment), the
creator of ChatGPT, has announced that they are going to
leverage 20% of computing resources to fine-tune strong
pretrained LLMs for regularizing LLMs to faithfully follow
instructions or generate safe outputs. Fortunately, wireless
alignment enables massive users to contribute their efforts
and computing resources in alignment activities and contribute
their efforts towards unlocking the full potential of LLMs
while following human value and intentions, positively im-
pacting various domains and enriching human experiences.

2) Tool Usage and Generation: By instruction fine-tuning
on API datasets, mobile LLM agents should become proficient
in leveraging tools and APIs to accomplish intricate tasks and
interact with different virtual applications effectively based
on general plans from edge LLM agents [14]]. Therefore,
depending on specific environments and agent types, mo-
bile LLM agents can be customized using local instruction
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Fig. 2: An example of mobile and edge LLM agents used in the generation of accident reports for car crashes.

fine-tuning datasets, which encompass real-world APIs and
practical scenarios, to accomplish both single-tool and multi-
tool tasks. Furthermore, mobile LLM agents can showcase
exceptional adaptability when faced with unfamiliar APIs and
tool-use datasets that are outside their usual field, particularly
when users are inexperienced in the given environments.

3) Embodied Actions: To effectively interact with humans
and physical environments, mobile LLM agents can perform
embodied actions, including movements, gestures, or other
physical behaviors [2] to interact with the physical world
directly under the high-level plans from edge LLM agents.
Embodied actions of mobile LLM agents are physically per-
formed according to their design, mechanical features, and
technology. For instance, vehicles can perform basic mechan-
ical movements, such as driving forward and backward, tuning,
braking, and accelerating. By performing these embodied
actions, vehicles can easily adapt to road conditions, e.g.,
bumpy roads, slippery surfaces, and bad weather by adjusting
internal temperature and air quality. To navigate through
unfamiliar environments, robots with mobile LLM agents need
to gather information, carry out tasks, and interact with other
agents like humans. By performing embodied actions, mobile
and edge LLM agents can extend their capabilities beyond
digital boundaries, and interact and manipulate their physical
surroundings directly.

VI. CASE STUDY OF MODEL CACHING FOR
COLLABORATIVE MOBILE AND EDGE LLM AGENTS

In the split learning system of LLM agents over collab-
orative end-edge-cloud computing, each mobile Al agent is
composed of a perception module, a local reasoning module,
and an alignment module while each edge LLM agent consists
of a global reasoning and planning module. In addition to

allocating traditional computing, communication, and storage
resources for executing LLM agents, the LLMs running in
these agents are new resources to be allocated for perform-
ing contextual tasks of AI agents. Specifically, mobile LLM
agents can leverage local LLMs for zero-shot environmen-
tal perception and auction, which is more comprehensive.
Meanwhile, edge LLM agents with global LLMs can perform
more intricate step-by-step reasoning and planning with global
information for reliable and interpretative decision-making.

To construct the perception module of mobile LLM agents
that can collect multimodal information from the environment,
we leverage the ImageBind [8] and the LanguageBind [[15]]
for sensing the environment. The ImageBind, based on ViT-
Huge, and the LanguageBind, based on ViT-Large, use image
embeddings as a central anchor to align embeddings from
other modalities like text, audio, depth, thermal, and IMU data.
The LanguageBind employs contrastive learning to align and
bind different modalities including video, infrared, depth, and
audio from the environment with the language modality. In
this study, we evaluate the perception module using the IN1K
dataset for image data, the K400 dataset for video data, the
LLVIP dataset for infrared data, the NYU-D dataset for depth
data, the ESC-50 dataset for audio data, and the Ego4D dataset
for IMU data.

In this use case, we leverage mobile and edge LLM agents to
generate accident reports collaboratively for car crashes, where
multiple mobile agents perceive the environment and report
their local observations to edge LLM agents. Meanwhile, edge
LLM agents generate a general report by leveraging global
information and high-level plans for mobile agents. We vali-
date the performance of LLM agents based on the Car Crash
dataset (https://github.com/Cogito2012/CarCrashDataset). The
mobile LLM agents on vehicles are implemented based on



TABLE I: Evaluation of mobile LLM agents with different
perception modules for different modalities.

ImageBind LanguageBind
Model ViT-Huge (632 M) | ViT-Large/14 (307M)

Image - INIK 1.7 -

Video - K400 50.0 64.0
Infrared - LLVIP 63.4 87.2
Depth - NYU-D 54.0 65.1
Audio - ESC-50 66.9 89.8

IMU - Ego4D 25.0 -

LLaMA. The perception module is developed based on Video-
LLaMA, the local grounding module is developed based
on LLaMA-7B-Chat, and the alignment module is devel-
oped based on ToolLLM. The edge LLM agent on the
edge server is developed based on GPT4 and we implement
a GPT named “Accident Report Assistant” as the global
Al agent (https://chat.openai.com/g/g-7sWIT5dSD-accident-
report-assistant). The actuation module is implemented with
ToolLLaMA, which is a fine-tuned LLaMA-7B model using
the instruction-solution pairs.

After the perception of environments, each mobile LLM
agent for perception describes the local situation and reports
the current situation to the edge LLM agent. Based on the
collected local perception, the edge LLM agent aggregates
them into a comprehensive picture for the following multi-
step reasoning and planning processing, e.g., CoT. Finally,
the edge LLM agent provides general plans to mobile LLM
agents for actuation and lets them interact with users and
environments with local plans translated by their local LLMs,
including text responses, APIs, and embodied actions. Due to
the limited context window of mobile and edge LLM agents,
we consider the inference of perception and actuation to be
zero-shot and their performance is determined by perception
fidelity of multimodal information and successful ratio during
interaction with users and environments. Furthermore, edge
LLM agents can provide suggestions for multiple local agents
and their performance is affected by their historical thoughts.
As the CoT is a step-by-step inference process that generates
multiple intermediate thoughts during the grounding of final
decisions, the thought that is closer to the final decisions
should contribute more value to making the final decisions.
In this regard, we propose a metric of age-of-thought (AoT)
to evaluate the value of thoughts based on their freshness.

With the limited memory of edge servers and the massive
amount of parameters of LLMs, edge servers cannot load
all the models into the main memory at the same time. To
provide Al services to satisfy user requirements, edge servers
need to schedule the global AI models for reasoning and
planning for the requested services. To minimize the cost
in terms of edge accuracy loss, model switching cost, edge
inference cost, edge inference latency, and cloud inference
cost, effective model caching algorithms should be designed to
manage loaded models for edge LLM agents. Especially, the
cached models not only can be evicted proactively according
to the caching policies, but also can be evicted due to the used
context exceeding the context window. Therefore, we propose
an LAoT model caching algorithm based on the concept of
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Fig. 3: The execution cost of various model caching
algorithms in different time slots.

AoOT where the model with the least valuable thoughts is
evicted.

The maximum token consumption for each CoT step is set
to 200 in the experiment. The context window of LLaMA
is 4K tokens, the context window of GPT-3.5-turbo is 16K
tokens, and the context window of GPT-4 is 32K tokens. We
consider an edge server with 64 GPUs with 80 GB memory,
312 TFLOPS, and 300W max thermal design power. We
consider 30 types of services and 10 edge LLM agents. The
experimental results are illustrated in Fig. 3] As the number
of time slots increases, the cost of edge inference of LLM
agents decreases due to less switching cost and higher model
performance. The reason is that the popular models are loaded
into the memory of edge servers. In addition, during the
inference of edge LLM agents, the thoughts are accumulated
to improve the reasoning and planning results and thus the
edge accuracy loss is lower. Overall, we can observe that the
LC algorithm can improve the accuracy of edge LLM agents
while reducing total execution costs compared to the existing
baselines, including cloud-only inference, the first-in-first-out
(FIFO) policy, and the least frequently used (LFU) policy.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we have proposed a split learning system for
LLM agents over collaborative end-edge-cloud computing in
6G networks for multimodal perception, interactive grounding,
and alignment. We have introduced the evolution of LLM
agents and the construction of LLM agents over end-edge-
cloud computing with collaborative mobile and edge LLM
agents. Furthermore, we have investigated the communication
and networking issues in developing mobile edge-empowered
agents including perception, grounding, and alignment. Fi-
nally, we have developed a use case for the application of
mobile and edge LLM agents in vehicular networks and pro-
pose a model caching algorithm to optimize the performance
of AI agent services while reducing execution costs.

In future research, it is important to explore further inte-
gration of 6G networks and Al agents. This could involve in-
corporating next-generation multiple access, metasurface, and
over-the-air computation to support LLM agents in dynamic



wireless environments. Additionally, it is crucial to address the
model privacy concerns that may arise during collaboration
between mobile and edge LLM agents. This will help prevent
any potential information breach, especially in cases where
malicious edge servers may attempt to access users’ private
information from running models.
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