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Abstract—Deep learning (DL) enabled semantic communi-
cations have shown great potential to significantly improve
transmission efficiency and alleviate spectrum scarcity, by ef-
fectively exchanging the semantics behind the data. Recently, the
emergence of large models, boasting billions of parameters, has
unveiled remarkable human-like intelligence, offering a promis-
ing avenue for advancing semantic communication by enhanc-
ing semantic understanding and contextual understanding. This
article systematically investigates the large model-empowered
semantic communication systems from potential applications to
system design. First, we propose a new semantic communication
architecture that seamlessly integrates large models into semantic
communication through the introduction of a memory module.
Then, the typical applications are illustrated to show the benefits
of the new architecture. Besides, we discuss the key designs in
implementing the new semantic communication systems from
module design to system training. Finally, the potential research
directions are identified to boost the large model-empowered
semantic communications.

I. INTRODUCTION

In the past decade, we have witnessed the success of
deep learning (DL) in fostering various industries to im-
prove productivity and revolute the paradigm. Within the
realm of communications, particularly noteworthy is the rise
of DL-enabled semantic communications [1]. It has shown
the ability to improve spectral efficiency, transmission rates,
energy efficiency, and overall system robustness, which has
also been identified as one of the core techniques for the
sixth generation (6G) and beyond. The power of DL-enabled
semantic communications is rooted in the strong ability of
semantic representation and semantic understanding, allowing
more efficient semantic exchange for data generation and task
execution. Therefore, achieving powerful semantic representa-
tions and semantic understanding is one of the key problems
in improving the performance of semantic communication
systems.

The scaling laws [2] empirically show that scaling up
neural networks is an effective way to improve the capacity
for semantic representation and semantic understanding. By
scaling up the number of parameters to billions and feeding the
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vast data, large models appear to show a human-like ability in
intelligent tasks, which has been proposed as a promising new
technology for achieving general artificial intelligence. The re-
markable milestone is the launch of ChatGPT [3] which shows
the surprising ability to understand contextual conditions,
generate multimodal data, analyze data, etc. In sharp contrast
to the existing small models, the large models can solve zero-
shot or few-shot tasks through in-context learning, generate
controllably multimodal data through prompt engineering, split
a complex problem into multiple simple problems through the
chain of thought, and simulate the specified scenarios through
role play. Besides, the artificial intelligence generated content
(AIGC) [4]–[6] also benefits from the large models, leading
to more realistic and high-quality content generation. These
applications of large models can significantly enhance the
performance of semantic communication systems in terms of
system training, data generation, and task execution.

Next, we elaborate on the shortcomings of existing semantic
communication in achieving these applications. Review the
current semantic communications for different modalities [7]–
[10], given the source data, the transmitter encodes it to the
transmitted data by the semantic encoder and channel encoder,
and the receiver reconstructs the data or performs tasks by
semantic decoder and channel decoder. In this architecture,
a knowledge base is required to provide common knowledge
on both sides, e.g., the training dataset, to reach a consensus.
However, such a knowledge base is limited and cannot support
contextual understanding in large models. Large models can
employ contextual information (short-term knowledge) to un-
derstand the users’ intentions, execute complex tasks, and help
to generate multimodal data. Besides, large models can provide
more abundant information to the system. Therefore, differing
significantly from the semantic communications comprising
semantic codec and channel codec only, a new large model-
empowered semantic communication architecture is required.

This article introduces the new semantic communication ar-
chitecture to integrate large models and conventional semantic
communications and will answer these questions: Q1) What
will large models bring to semantic communications? Q2)
How to integrate large models into semantic communications?
Q3) What are the key designs in the large model-empowered
semantic communications? The key features and contributions
of this article can be summarized as follows:

• A novel semantic communication architecture is proposed
to fully utilize the power of large models by introducing
the memory module, which is used to provide contextual
information to the large models.
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Fig. 1. The proposed large model-aided semantic communication architectures.

• The typical applications of large model-empowered se-
mantic communication are discussed, including intention
understanding, multimodal generation, complex task exe-
cution, and scenario adaptation. The large models enable
semantic communications to support more types of tasks
and generate diverse data.

• The key designs of the novel architecture are elaborated
from the module design to system training, which consists
of the design of the memory module, the structures of
large models, the choice of joint design, the adaptive
transmission to avoid outage, and the training method.

II. NEW SEMANTIC COMMUNICATION ARCHITECTURE

Fig. 1 shows the proposed semantic communication archi-
tecture. This architecture consists of not only the modules in
existing semantic communications, i.e., the semantic codec
and channel codec, but also the new modules, i.e., memory
module and large model. The semantics is defined as the infor-
mation related to the content/tasks in the proposed architecture.

A. Contextual Information

In our daily lives, the contextual information may refer
to the dialog. However, in semantic communications, the
contextual information is not limited to the dialog but includes
the transmitted semantic information and the self-sensing
information. The transmitted semantic information contains
the multimodal semantics transmitted from the transmitter over
the past time slots, e.g., text features, speech features, and
visual features. This information could provide complementary
information to avoid semantic ambiguity. For example, given
the sentence “I want that, instead of this,” it is hard to
understand the meaning of “that” in the sentence without the
context “That is apple and this is banana.”

Another kind of contextual information is the self-sensing
information, e.g., user’s behaviors, the environment informa-
tion obtained from the cameras, and channel state information
(CSI) estimated from pilots, which can provide the context
for the sensing tasks, including gesture sensing and indoor

location. For example, the indoor pedestrian trajectory predic-
tion can be refined with the previous trajectory and the user’s
behaviors.

B. Memory Module

The human brain has a memory area, in which humans can
learn and analyze past information to help make decisions for
the current situation. Besides, the large model can solve zero-
shot or few-shot tasks through in-context learning. Inspired by
that, we introduce the memory module in the new architecture.
The memory module is used to store the received contextual
information, which can process the stored contextual informa-
tion and selectively update the stored contextual information
with the received contextual information, where the out-of-
date context will be replaced with fresh ones. It is helpful for
task-oriented semantic communications to support more kinds
of tasks and increase the accuracy of tasks.

Different from the large model provides general infor-
mation, the memory module is the short-term knowledge.
This historical information introduces the temporal domain
to semantic communications, such that the system can learn
the characteristics from the few past time slots and predict the
future semantics accurately.

C. Large models

Large models are the core part of powering up the ca-
pacity of semantic communications due to the diverse data
generation and the strong ability of semantic representa-
tion/understanding. The large models can basically be divided
into two categories according to the applications: the discrim-
inative model and the generative model. The discriminatively
large model can extract concise semantic information accu-
rately when giving complex inputs, which can enhance the
semantic understanding of semantic communications. In con-
trast, the generatively large model can generate data containing
fine-grained details with concise semantic information. This is
beneficial for semantic representation in semantic communica-
tions. By exploiting both types of large models, it is possible
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Fig. 2. Typical applications of large model-empowered semantic communications.

to enable semantic communication systems to transmit fewer
semantic information but generate more complex data and
serve the more difficult tasks.

III. POTENTIALS OF LARGE MODEL-EMPOWERED
SEMANTIC COMMUNICATIONS

This section introduces several typical applications of the
new semantic communication architecture, including intention
understanding, multimodal generation, complex task execu-
tion, and scenario generation.

A. Intention Understanding

In task-oriented semantic communications, the user wants
the receiver to perform the desired task. Recognizing the users’
intentions is the key part of performing the task successfully,
especially for the multi-task scenario in which multiple tasks
are performed simultaneously. The new semantic communi-
cation architecture can help the receiver recognize the users’
intentions. The context information from the transmitter gener-
ally contains the users’ intentions, where the intentions could
be performing a simple task as well as a series of tasks. We
can use the memory module to store and process the received
context information first, then provide it to the large language
models (ChatGPT, LLamDA, etc.) to understand the user’s
intention clearly, and finally choose the appropriate model to
perform the task. As shown in Fig. 2(a), the user transmits
the sentence to the receiver first, then the receiver recognizes
the intention that is to perform the image classification task,
and finally it chooses the corresponding model to classify the
object in the received image.

B. Multimodal Generation

This application uses large models, e.g., text-to-image or
text-to-video models (DALL·E, Midjourney, Stable Diffusion,
etc.), for generating multimodal data. The personalized ser-
vices, e.g., metaverse and personalized lives, will be beneficial

from this application with lower latency and more accurate
content generation. As shown in Fig. 2(b), the large models
can use the received semantics to generate artist-level videos or
images, which extends the capability of semantic communica-
tion from data reconstruction to personalized data generation.
The memory module can provide additional short-term to
control the data generation. For example, given the sentence
“Generate a rabbit playing guitar video, modern Disney style.”
the memory module can provide the rabbit image received
from the user in the last time slot, and the large model can offer
information about playing guitar and Disney style. Remark that
rabbit images belong to short-term knowledge since they could
vary from the users, however playing guitar and Disney style
are the common knowledge for most users. Compared with
conventional communications to transmit the sentence directly,
large model-empowered semantic communications can convey
the semantics more accurately thus achieving the desired data
generation.

C. Complex Tasks

The proposed semantic communication architecture enables
semantic communications to perform more complex tasks. The
large models have the capacity to decompose a complex task
into multiple simple problems through the chain of thought
and invoke different semantic decoders to finish the complex
task jointly. Moreover, since the large model belongs to the
multitask model, it is possible to replace the multiple semantic
decoders with only one large model. With the memory module,
the systems can perform both memoryless tasks and mem-
ory tasks. Memoryless tasks are only relevant to the inputs
received in the current time slot, e.g., receiving the image
and recognizing its category. Memory tasks are relevant to
inputs received in both the current and past time slots, e.g., the
response in the conversation relying not only on the currently
listened sentences but also on the previous context. As shown
in Fig. 2(c), consider the scenario visual question answer task,
the memory module can store the semantics of the received
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images and then provide them to the large models. Given the
question, “How many balls in this picture and last picture?”
The large model can understand the intention first and then
decompose it into several steps, i.e., identifying the balls in
the image and counting the number.

D. Scenario Generation

The application demonstrates that large models can improve
the robustness of semantic communications. Collecting real-
world data is challenging, but the generatively large model
can generate the training data for both the communication
and semantic aspects. For example, in autonomous driving,
generative AI offers more diverse and automated data, e.g.,
semantic multi-view panoramas and reconstructed real scenes,
providing a wealth of labeled data for model training.

In cases where collecting data for new communication
scenarios is arduous, the generatively large model can sim-
ulate the communication environment at the edge with the
simulator descriptions. Then, the transceiver can be trained
with the generated scenario first such that to adopt the new
environment, which helps semantic communication systems
adapt to different communication environments quickly. The
example is shown in Fig. 2(d), with the scenario descriptions,
the generated channels can be employed for training the image
semantic communication in an end-to-end manner. Further-
more, the generative scenarios offer valuable supplementary
information for optimizing beamforming, which therefore im-
proves the robustness of transmission. Beyond their utility in
communications, these generative large models extend their
versatility to generate diverse data types for various tasks.
For example, it can generate a large number of images with
specific categories for the image classification task and image
retrieval.

These applications can be applied to real-world scenarios
by deploying the large models locally, e.g., pedestrian re-
identification, scenario tasks, robot control, and by cooper-
ating with the large models at edge/cloud, e.g., simulation
environment generation, extended reality (XR), and virtual
reality (VR). For example, the new architecture can transmit
accurate semantics to edge and then feedback the generated
virtual items in VR.

IV. KEY DESIGNS

Besides the typical applications, in this section, we present
the main challenges in designing and implementing large
model-empowered semantic communications, which have the
design of memory modules, the design of large models, the
design of joint training, the adaptive transmission, and the
training method.

A. The Design of Memory Module

The design of the memory module mainly focuses on the
contextual store model and contextual update model, which is
shown in Fig. 3(a).

1) Contextual Store Model: The design of the contextual
store model needs to consider the size of the space, the
alignment of multimodally contextual information, and the
design of temporal coding. The size of space affects how
much contextual information can be stored, where the smaller
space fits the tasks that require fresh information and low
computation power, and vice versa. In addition, the alignment
of multimodally contextual information is to find relationships
and connections between two or more modalities. A better
alignment design can help improve the understanding of mul-
timodal contextual information and make context management
easier. Moreover, for contextual information, it is important to
recognize the order of features in the context that happened
earlier or later. Thus, we need to design the appropriate
temporal coding to describe the temporal relationship between
these contextual features.

2) Contextual Update Model: The contextual update model
should carefully design the updating rules to replace the
context with the incoming context. The rules could be the
freshness of information, the value of information, the corre-
lation of information, and so on. The freshness of information
is for the tasks demanding frequent and regular updates
of certain information. Timely updates of the context are
an important aspect of such tasks, e.g., metaverse, remote
control/monitoring of autonomous vehicles, etc. The value of
information measures the contributions of the context to the
tasks, which is suitable for resource allocation decisions. The
measurement of correlations between contexts is beneficial for
tasks requiring long-term retrieval, in which the least relevant
context will be replaced. These rules could be used separately
or jointly to update the stored context, such that provide more
accurate contextual information for the tasks.

The recent work [11] is to formulate the memory module
as a queue with finite length for memory tasks. In Fig. 4,
we show the comparison for the semantic communications
with and without the memory module. The scenario question-
answer task is considered. It is interesting to observe that
the semantic communication system with a memory module
outperforms that without a memory module significantly in
terms of answer accuracy.

B. The Design of Large Model

The design of large models can be divided into encoder-
only, decoder-only, and encoder-decoder, which are shown in
Fig. 3(b). These designs focus on different capabilities, i.e.,
understanding and generation.

1) Encoder-only Design: The encoder-only model mainly
focuses exclusively on encoding input data into a fixed-
dimensional representation, often referred to as embeddings or
latent representations, which is to capture meaningful features
or representations of the input data. This type of model is
trained by masking the information randomly and predicting
the masked information with the unmasked information. The
absence of a decoder in encoder-only models simplifies the
architecture and reduces computational complexity, making
them efficient for tasks that require feature extraction or rep-
resentation learning, e.g., classification tasks, without the need
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for data generation or sequence-to-sequence transformations.
The representative works of the encoder-only model are BERT
for text and Mask-Autoencoder for the image.

2) Decoder-only Design: The decoder-only model, also
called the generative model, focuses exclusively on generating
output data or sequences from given inputs or latent represen-
tations, which is to transform input data or latent represen-
tations into target sequences or structured outputs. The type
of model is trained in an auto-aggressive manner generally,
predicting the next word or pixels based on the previous words
or pixels. The absence of an encoder in decoder-only models
weakens the understanding ability but enhances the generative
ability, which is suitable for tasks that require data generation
or sequence-to-sequence transformations. GPT-4 and stable
diffusion models are the representative works.

3) Encoder-Decoder Design: The encoder-decoder model
employs the encoder to learn the latent represents of source
data and the decoder to generate the target data, in which the

encoder represents the understanding ability and the decoder
has the generative ability. This type of model can be trained
using supervised learning, where they learn to map input
sequences to target sequences using pairs of aligned data (e.g.,
source and target sentences in machine translation). This de-
sign considers data understanding and data generation together
and can be adapted for tasks like image captioning, where
the encoder processes an image, and the decoder generates a
textual description. The recent works of the encoder-decoder
model are Flan-UL2 and Flan-T5.

The recent works [6], [12], [13] mainly adopt the decoder-
only design due to the amazingly generative results and more
efficient running on capacity-limited devices.

C. Joint or Separate Design

Based on Shannon’s theorem, current communication sys-
tems adopt a separate design, where each module is optimized
separately. Such a separate design does not consider the
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error propagation between each module, which achieves local
optimization. Therefore, we can jointly design and train the
model to alleviate the error propagation. There exist two kinds
of joint design, shown in Fig. 3(c), 1) the joint transceiver
design and 2) the joint semantic-channel coding design.

1) joint transceiver training: First, we discuss the joint
transceiver training. By feeding the large training data and set-
ting loss functions, the weights of the transmitter and receiver
will be updated by the stochastic gradient descent (SGD) algo-
rithm with the back-propagation from receiver to transmitter,
which can alleviate the error propagation and achieve global
optimization in an end-to-end manner. However, it needs a
stable feedback channel to transmit the gradients accurately
for online training. Therefore, such design generally is taken
locally and then deployed the models to devices.

2) joint semantic-channel coding design: The second one
is the joint semantic-channel coding design, in which the
semantic coding and channel coding are optimized jointly
but the transmitter and receiver are trained separately. This
design does not need gradient feedback from the receiver to
the transmitter, which is suitable for online training. Due to the
local optimization, the joint semantic-channel coding design
slightly underperforms the joint transceiver design in some
cases but outperforms the separate design.

Choosing which joint design depends on the availability of
stable feedback channels. The recent works of semantic com-
munications [9]–[11] mainly adopt the joint transceiver design
due to the better performance in terms of data reconstruction
and task execution. In Fig. 4, we show the comparison for
different designs. The simulation results demonstrate that the
joint design can achieve a better answer accuracy than the
separate design.

D. Adaptive Transmission

The adaptive transmission in conventional communication
can adopt different combinations of channel coding rates and
modulation orders to avoid outages for different channel con-
ditions. In semantic communications, adaptive transmission

can be achieved by masking the unessential elements in the
transmitted signals, i.e., masking less at low signal-to-noise
ratio (SNR) regimes to ensure the reliability of performing
tasks and masking more elements at high SNR regimes to
achieve a higher transmission rate. As shown in Fig. 3(d), the
design of adaptive transmission in semantic communication
has two types: 1) learning-based and 2) theory-based.

1) The Learning-based Adaptive Transmission: The
learning-based method introduces the rate control network
to predict the number of masked elements for different
SNRs by adversarial training, where the number of mask
elements and the quality of data reconstruction achieve the
Nash equilibrium. However, this learning-based method faces
several challenges. First, this method may face mode collapse,
in which the number of masked elements for different SNRs
will converge to the same. A well-designed network structure
and hyper-parameters are required. Besides, since the mask
generation is based on both the dynamic semantic information
and the SNRs, the mask information should be transmitted
to the receiver to pad zeros. Different rate control networks
have been proposed, i.e., the spatial mask network and the
Gumbel softmax-based [14], and so on.

2) The Theory-based Adaptive Transmission: The relation-
ship between the number of masked elements and SNRs is
derived mathematically [11]. Then, the transceiver is trained
by masking the pre-defined number of elements. The theory-
based method can avoid the mode collapse and does not need
to transmit the mask information. However, it needs to find
the connections between semantic noise and channel noise.
Sometimes, semantic noise is hard to model mathematically,
especially for large models.

E. Training Method

The large model includes billions of parameters, mak-
ing training processing time-consuming and computation-
intensive. Jointly training the system with the large models
becomes less feasible. As shown in Fig. 3(e), instead of
updating full parameters, we can employ the Low-Rank Adap-
tation (LoRA) [15] to update the parameters of a large model,
where the gradients are replaced with two learnable low-rank
matrices of weights. We can also use LoRA with federated
training to protect user’s privacy. Besides, for training semantic
codec, we can freeze the large model and introduce the cross-
attention layer to merge the knowledge from the large model.

V. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

This article proposes large model-empowered semantic
communications to fully utilize the power of a large model
to enhance the capacity of semantic communication. The new
modules have been developed to support the large model-
empowered semantic communication systems, the following
challenges should be addressed:

A. The Modeling of Memory Module

The current memory module is only modeled as the queue
with finite length following the first-in first-out, in which the
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memory store model is the queue and the memory update
model is the first-in first-out. However, such a design does
not consider the alignment of multimodal semantics and the
correlation between context information, therefore it is not
suitable for more complex scenarios. To support more effective
processing of contextual information, we need to design novel
schemes on the memory store model and memory update
model to maximize the utilization efficiency.

B. The Deployment of Large Model

Even though the large model has shown powerful capac-
ities for various tasks, it includes hundreds of billions of
parameters, which makes the large model hard to deploy on
mobile devices. The cost of applying large models to semantic
communications directly is the high power consumption and
even device crashes. One way to deploy the large models to
the capacity-limited device is to compress the large model by
model compression techniques, i.e., weights pruning, weights
quantization, and knowledge distillation. Another way is to
perform large models with edge computing, which can offload
the computation-intensive tasks to the edge server. However,
compression techniques and edge computing will inevitably
degrade the performance of large models or increase la-
tency. Therefore, new model compression and edge computing
techniques to achieve graceful performance degradation are
urgently needed to speed up the deployment of the large model
by considering the trade-off between computation resource,
communication resource, and performance.

C. The Joint Training Algorithm

Training the large model from scratch is money-consuming
and time-consuming. For example, GPT-3 is trained more than
1,000,000 V100 GPU hours. Thus, the mainstream is to train
the base model with billions of parameters and then fine-
tune the pre-trained base model for the downstream tasks
with some epochs. However, such fine-tuning is still time-
consuming and is not stable, which depends on the training
data and the settings of hyper-parameters. Besides, semantic
communication systems are generally trained in a joint manner
for better performance. The additional modules, i.e., memory
module and channel codec, will also increase the complexity
of joint training. Therefore, it is still essential to design an
effective training algorithm to speed up joint training of the
pre-trained large model, memory module, and channel codec.

D. The Multimodal Information Processing

The recent works focus on the two modality information
processing, i.e., text and image, which has shown superiority
over the model trained with only one modality. The real
world exists not only text and image, but also the other
modalities of data, e.g., audio, depth-image, radar information,
CSI information, etc. Besides, the memory module introduces
multimodal information in the time domain. Merge all the new
types of data can improve the generalization of large models
for more tasks in the real world. How to design the model to
fuse this information remains to be studied.
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