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Abstract—Optimizing various wireless user tasks poses a
significant challenge for networking systems because of the
expanding range of user requirements. Despite advancements in
Deep Reinforcement Learning (DRL), the need for customized
optimization tasks for individual users complicates developing
and applying numerous DRL models, leading to substantial
computation resource and energy consumption and can lead
to inconsistent outcomes. To address this issue, we propose a
novel approach utilizing a Mixture of Experts (MoE) framework,
augmented with Large Language Models (LLMs), to analyze
user objectives and constraints effectively, select specialized DRL
experts, and weigh each decision from the participating experts.
Specifically, we develop a gate network to oversee the expert
models, allowing a collective of experts to tackle a wide array of
new tasks. Furthermore, we innovatively substitute the traditional
gate network with an LLM, leveraging its advanced reasoning
capabilities to manage expert model selection for joint decisions.
Our proposed method reduces the need to train new DRL
models for each unique optimization problem, decreasing energy
consumption and AI model implementation costs. The LLM-
enabled MoE approach is validated through a general maze
navigation task and a specific network service provider utility
maximization task, demonstrating its effectiveness and practical
applicability in optimizing complex networking systems.

Index Terms—Generative AI (GAI), large language model,
mixture of experts, network optimization

I. INTRODUCTION

As we step into the era of Sixth-Generation (6G) networks,
the dynamics of wireless communication and network sys-
tems are undergoing significant transformation, propelled by
increasing complexity and a widening array of user needs [1].
These advanced networks are anticipated to offer unparal-
leled speed and connectivity while being fundamentally user-
focused, flexible, and smart [2]. Consequently, the need for
sophisticated optimization within network systems has inten-
sified, becoming essential to unlock the extensive capabilities
of 6G. Among various technological innovations, Deep Re-
inforcement Learning (DRL) is a critical enabler [3]. DRL’s
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Fig. 1. Network optimization strategies. Part A demonstrates the drawbacks
of training distinct AI models for different user requirements, emphasizing the
costs of excessive AI model deployment. Part B presents our LLM-enabled
MoE approach, using a limited set of DRL models to efficiently address a
variety of user tasks.

inherent flexibility and ongoing learning potential make it ex-
ceptionally capable of meeting dynamic demands of evolving
networks, effectively responding to the complex patterns of
user interactions and requirements [3].

However, the rapid expansion of DRL models, each tailored
for specific tasks, significantly strains network servers due to
the high demands for training and deployment resources. As
shown in Fig. 1, the pre-trained DRL models are inadequate
when a user presents a new requirement. Consequently, this
situation presents a significant challenge in pursuing user-
centric networks. A critical question arises:

• How can we achieve effective network optimization with-
out using numerous DRL models individually trained for
each specific task?

Recent advancement of the Mixture of Experts (MoE) frame-
work offers an effective solution [4]. By employing a range of
AI models as specialized experts, MoE supports collaborative
decision-making, significantly reducing the need for individual
task-specific model training. Within this framework, actor
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networks, trained by varied DRL policies, can act as expert
models to tackle new and complex user tasks by jointly
making decisions. A gate network is conventionally trained to
manage and schedule these expert models, ensuring optimal
task handling. However, training the gate network presents its
own set of challenges, including uncertainties in performance
and potential limitations imposed by the number of experts
and task complexity.

Fortunately, the advancement in Large Language Models
(LLMs) presents a promising solution. As shown in Fig. 2,
LLMs, with their extensive knowledge bases and strong rea-
soning capabilities, are adept at understanding user require-
ments through text-based interactions [4], [5]. This capability
to accurately interpret and react to user inputs positions LLMs
as suitable alternatives for the gate network in the Mixture of
Experts (MoE) architecture. As a result, LLMs can effectively
orchestrate the selection and integration of specialized expert
models, thereby improving the system’s decision-making ef-
ficacy and responsiveness to user requirements [4]. Thus, in
this paper, we propose an innovative approach for optimizing
user-centric network systems by leveraging the advanced ca-
pabilities of LLMs alongside the MoE framework. Within the
LLM-enabled MoE framework, each expert model is a distinct
DRL model deployed on separate edge servers optimized for
specific network tasks. The LLM facilitates the alignment of
DRL model outputs with user requirements, improving the
collective decision-making mechanism. We summarize our
main contributions as follows:

• By adopting the MoE framework, we facilitate the coop-
erative operation of various DRL models, improving the
network’s efficiency and capacity to adapt to evolving
user requirements.

• We integrate LLMs into the MoE architecture, enabling
a synergistic approach where multiple DRL models work
together under the guidance of an LLM to address new
network optimization problems.

• We evaluate our LLM-enabled MoE approach through
empirical testing on a standard DRL task, i.e., maze
navigation, and a network optimization task to maximize
utility for Network Service Providers (NSPs). These tests
have demonstrated the effectiveness and versatility of our
approach in practical scenarios.

A list of mathematical symbols frequently used in this paper
is available in Table I.

II. LLM-ENABLED MIXTURE-OF-EXPERTS APPROACH

This section introduces the LLM-enabled MoE approach
by considering a general DRL environment, i.e., the grid-
world maze. Notably, this example can seamlessly extend
to a wide range of network optimization problems, such as
optimal service network selection, load balancing, and power
allocation.

A. Environment Settings
The grid-world maze [6] is set up as a 3 × 7 grid where a

walker navigates to achieve specific requirements. In the maze,
there are several special positions:

• Goal: The destination that the walker aims to reach.
• Prize: A designated grid position that awards a positive

reward upon the walker’s arrival.

TABLE I
KEY MATHEMATICAL NOTATIONS.

Notation Description
sk The requirement of the kth user
ok The task objective

mall
The set of available expert models for the

LLM
mk The selected expert models

gk
The additional information about the network

optimization problem
dk The final decision
M Number of antennas in BS
K Number of users
N Number of DRL models
Dk Transmission distance of the kth BS-user pair
αk Path loss exponent of the kth BS-user pair
Pk Downlink transmit power
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Fig. 2. Workflow of the proposed LLM-enabled MoE framework: Upon
receiving a text-based description of their requirements, the LLM processes
and reasons about the user’s needs, identifying the experts necessary for the
task at hand and determining their decision-making weights.

• Trap: A grid position that incurs a penalty when encoun-
tered by the walker.

The tasks in this grid-world maze environment are diverse,
aiming not only to reach specified goals but also to collect
prizes and avoid traps. Users can define these tasks through
textual commands, such as “Find the shortest path to the
goal,” or “Navigate the walker to explore the environment and
obtain the prize.” The diversity of tasks in this environment
mirrors similar scenarios in network optimization, where user
requirements can vary widely, e.g., “Optimize bandwidth to
improve streaming quality,” or “Balance network load to
prevent congestion during peak hours.”

B. LLM-enabled MoE Approach

In the LLM-enabled MoE framework, the gate network is
trained via specific algorithms, like reinforcement or super-
vised learning, to ascertain the applicability of diverse expert
models to user-defined requirements. For instance, to train a
gate network in the maze navigation task using the DRL, we
define the state as the walker’s precise location on the grid. The
action, represented as a vector, determines each expert model’s
contribution weight, where a zero value negates the respective
expert’s influence. The reward mechanism is defined according
to user requirements to ensure the gate network’s behavior
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“Go to the goal!”

“Avoid the trap!”

“Get the prize!”

Final task Safely obtain the prize first then arrive goal

Stages Before Obtain Prize After Obtain Prize

Subtask Obtain the prize safely Get to the goal safely

Model Model b + Model c Model b + Model a

Goal

Start
Trap
Prize

LLM

Expert Models Set User’s Requirement and LLM’s Reasoning

Final Results

Model a:

Model b:

Model c:

Walker Path

Fig. 3. LLM-enabled MoE framework demonstration in a maze navigation task. An ensemble of DRL models trained on diverse tasks serves as a set of
expert models accessible to the LLM. The LLM analyzes and infers user tasks, leveraging combinations of expert models to address the final objectives.

aligns with its final goals. However, the mathematical expres-
sion of reward can vary significantly based on user needs,
presenting a significant challenge. Herein lies the opportunity
for integrating LLMs. With the analytical prowess of LLMs,
it is feasible to infer the necessary expert models and deduce
their combinatory decision-making process directly from user
requirements without additional training. As shown in Fig. 3,
the LLM evaluates the current state, objectives, and available
set of expert models, selecting suitable experts to achieve the
final task. The LLM-enabled MoE inference process involves:

• Step 1: Objective Formulation: Analyzing user input and
system state to formulate the task objective function.

LLM{sk} → ok, (1)

where LLM{·} denotes the inference process of the LLM,
sk is the requirement of the kth user such as “I want to
arrive the goal in the safest way”, and ok is the task
objective such as {“Go to the goal”, “Avoid the trap”}.

• Step 2: Expert Selection: Identifying relevant experts
from the set of expert models based on the formulated
objective.

LLM{ok,mall} → mk, (2)

where mall is the set of expert models and mk is the
selected models. For example, for ok in Step 1, the expert
models a and b are selected to perform the task.

• Step 3: Inference Combination: Reasoning and combining
the inferences from selected experts.

LLM{mk,ok,gk} → dk, (3)

where gk is the additional information about the network
optimization problem, such as the wireless network con-
ditions, and dk is the final decision, i.e., the path of the
walker.

• Step 4: Decision Execution: Executing the combined
inferences, i.e., dk.

III. APPLICATIONS IN INTELLIGENT NETWORKS

This section examines a utility maximization problem for
(NSPs), where users exhibit varying Quality of Service (QoS)
demands. We show the functionality of our proposed LLM-
enabled MoE approach in addressing the NSPs’ utility maxi-
mization problem under users’ diverse requirements.

“I seek a low bit error probability for 

reliable medical image downloads”

“I require a high data rate for smooth 

video streaming”

“I need a low outage probability for 

uninterrupted phone calls”

“I demand high throughput for optimal 

online gaming performance”

…
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Fig. 4. System model. Part A shows the Service Market Model, illustrating
the interaction between the NSPs and Users. Part B represents the Wireless
Network Model, wherein we consider a BS with M antennas providing
services to a user device. Part C shows various user requirements under
different scenarios, which affect the payment structure in Part A and the
optimal power allocation strategies in Part B.

A. System Model

As shown in Part A of Fig. 4, we consider that the NSP
provides a range of services, including voice calls, video
streaming, and image downloading, to users via a wireless net-
work. Within this framework, users, i.e., direct end-users and
subscription-based intermediaries that consolidate demand,
subscribe the NSP based on their specific QoS requirements,
as depicted in Part C of Fig. 4. We consider the service
market model between NSPs and K users [7]. Specifically,
the NSPs offer network resources, i.e., transmit power Pk

(k = 1, . . . ,K), in exchange for payment. The users have
different requirements that define their expected QoS, ranging
from low Outage Probability (OP) for uninterrupted voice calls
to high throughput for online gaming performance. Let gk
and Qk denote the kth user’s wireless conditions and QoS,
respectively. We define the optimization problem for each kth
BS-user pair as follows:

max
Pk

β1F (Qk (Pk, sk, gk))− β2Pk

s.t., Pk ≤ Pth,

Pk ∈ {P (a)
1 , . . . , P

(a)
L },

Qk (Pk, sk, gk) ≥ Qk,min

(4)
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where β1 represents the unit received payment from the users,
Qk,min is the lowest QoS that the kth user can accept,
F (·) is a utility function that maps diverse QoS metrics
to a standardized assessment framework of user satisfaction
and corresponding charges, β2 denotes the cost coefficient,
reflecting the resource expenditure of the NSP for transmit
power, {P (a)

1 , . . . , P
(a)
L } is a set of available power value

settings, and Pth is the transmit power threshold.
We consider that the Qk,max to be the upper bound on the

performance metric that the network can provide to the kth
user. Thus, F (·) can be modeled as [8]

F (Qk (Pk, sk, gk)) =
Qk (Pk, sk, gk)−Qk,min

Qk,max −Qk,min
. (5)

To effectively tackle the optimization challenge in (4), defining
the QoS formulation based on users’ requirements is crucial.
For instance, a textual request such as “I am making a call and
need to ensure continuity” implies that QoS primarily focuses
on OP, whereas “I am downloading medical images, accuracy
is critical” suggests that Bit Error Probability (BEP) is the
main QoS concern. This understanding allows for tailored
optimization approaches that align with specific user needs,
enhancing the overall service efficacy.

B. Set of Expert Models Training

Various DRL models can be trained according to specific
QoS requirements, which form a set of expert models. Here,
we consider two representative scenarios:

• Case 1. OP: Users require a low OP to ensure un-
interrupted voice calls, which is paramount for both
professional and personal communications. Here, we have
Qk (Pk, sk, gk) = 1−OP.

• Case 2. Data Rate (DR): A high DR is essential
for users using video streaming, enabling a buffer-free
experience with high-definition content. In this case, we
have Qk (Pk, sk, gk) = DR.

As depicted in Part B of Fig. 4, we consider a multiple an-
tenna Base Station (BS) employed for service delivery within
the wireless network. For the kth BS-user pair, the baseband
received signal at each symbol period can be expressed as
r =

√
D−αHwx+n, where H represents the channel matrix

with elements denoting the channel gains, w is the weight
vector applied at the transmitter, x denotes the transmitted
symbols, and n is the noise vector at the receiver. The weight
vector, w for the Maximum Ratio Transmission (MRT) is
designed to align with the conjugate of the channel matrix
H, thus w = PHH/∥H∥, where ∥H∥ denotes the Frobenius
norm of H. The SNR under the MRT scheme is formulated
as follows:

SNR =
D−α∥Hws∥2

σ2
=

PD−α
M∑
j=1

h2
k,j

σ2
, (6)

where P represents the total transmit power, and σ2 denotes
the noise power. Considering each hj in H follows a Rayleigh
distribution, the squared magnitude |hj |2 adheres to an expo-
nential distribution. The Probability Density Function (PDF)

of the effective channel gain, Y =
M∑
j=1

h2
k,j , can be then given

by fY(y) =
yM−1

Γ(M)θM e−
y
θ , where θ is the mean power of the

sum of squared channel gains and Γ(·) is the Gamma function.
The PDF of SNR is obtained by scaling and transforming the
PDF of Y , leading to:

fSNR(z) =
( σ2

PD−α )
MzM−1

Γ(M)θM
e−

σ2z

θPD−α , (7)

where z is the SNR variable. We then explore the mathematical
formulation of the reward function of the DRL models by
deriving the closed-form of network performance metrics:

Proposition 1. The OP can be derived as follows:

OP =
Γ
(
M, σ2

θPD−α γth

)
Γ (M)

, (8)

where γth is the threshold for communications outage, and
Γ (·, ·) is the upper incomplete Gamma function [9, eq.
(8.350.2)].

Proof: Please refer to Appendix A.

Proposition 2. The achievable DR for given bandwidth B and
SNR can be expressed as:

DR =
B

ln (2) Γ (M)
G3,1

2,3

(
Dασ2

θP

∣∣∣∣ 0, 1
M, 0, 0

)
. (9)

Proof: Please refer to Appendix B.
Leveraging Propositions 1 and 2, NSP utility maximization

models, taking into account user QoS metrics such as OP and
DR, can be effectively trained. Similarly, DRL models can
be developed for other QoS indicators, such as BEP. These
models form the set of expert models, which the LLM then
utilizes for optimization tasks.

C. LLM-enabled MoE for New User Requirement
We consider an optimization task that arises from a new

user requirement for which no dedicated DRL model has been
previously trained:

• Case 3. New User Requirement: Users engaged in
online games require smooth experience with the require-
ment: sk = “I need seamless and uninterrupted gaming
sessions”.

Given this new requirement, we explore the application of
the LLM-enabled MoE framework as follows:

• Step 1: Objective Formulation: The LLM begins by
interpreting the user’s input sk, to establish task objec-
tives, transforming user needs into actionable goals. The
output of LLM1 is “ ‘Seamless’ implies a smooth and
uninterrupted flow of data transmission, and ‘uninter-
rupted’ suggests that the flow of bits is continuous and
consistent”. Considering these factors, it is reasonable to
consider throughput as a key aspect. Throughput directly
impacts the speed and efficiency of data transfer, affect-
ing gameplay’s responsiveness and overall smoothness.”
Note that the throughput, i.e., TP, is defined as

TP = (1−OP)DR. (10)

• Step 2: Expert Selection: Without a retrained DRL model
for throughput, the LLM assesses the available set of

1We show the key part of LLM’s output due to the page limitation.
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Fig. 5. Mixture of mission experts rewards and mission completion rate comparison.

expert models to identify those relevant to achieving high
throughput. The output of LLM is “To optimize through-
put for gaming sessions, the focus is on minimizing OP
and maximizing DR.”

• Step 3: Inference Combination: The LLM then synthe-
sizes the selected experts’ inferences, reasoning out how
best to combine their outputs to enhance throughput,
factoring in the minimization of OP and maximization
of DR. More analysis is given in Section IV-B.

• Step 4: Decision Execution: Finally, the network executes
the derived transmit power setting.

IV. NUMERICAL ANALYSIS

A. Maze Navigation Task

For the maze navigation task, we consider a walker
in a grid-based simulation across three user requirements:
Goal+Trap (reaching the designated goal while avoiding
traps), Goal+Prize (acquiring a prize before reaching the
goal), and Goal+Prize+Trap (a combination requiring prize
collection, trap avoidance, and goal attainment). These tasks
tested the system management model’s ability to integrate
multiple objectives, using success rates and path efficiency as
metrics. We compared a traditional gate network-enabled MoE
approach and our proposed LLM-enabled MoE approach2.

As presented in Fig. 5, the gate network-enabled MoE starts
with a 75% success rate. However, the rate decreases because
the walker tries to explore more efficient paths, increasing
the risk of task failure. Conversely, the LLM-enabled MoE
maintained success rates above 85%, demonstrating superior
strategic balance and decision-making. In the more straightfor-
ward Goal+Prize task, the gate network MoE’s performance

2The LLM model used in our experiments is gpt-3.5-turbo-1106 by Open
AI.

linearly increases due to the straightforward objective. How-
ever, in the challenging Goal+Prize+Trap mission, the gate
network MoE starts at a 30% success rate, while the LLM-
enabled MoE starts at 85.5%, showing LLM’s adeptness in
handling complex situations. Furthermore, the LLM-enabled
MoE completes missions more efficiently with fewer steps
and requires less intricate reward strategies, highlighting its
adaptability.

B. NSP Utility Maximization Task

Fig. 6 presents the LLM-enabled MoE workflow, illustrating
that the NSP’s optimal transmit power is adaptive to user-
specific requirements. We consider M = 10, θ = 6, D = 10,
α = 2, σ = 1, β1 = 1, β2 = 0.003, B = 106, and
γth = 10 dB. The decision-making process is shown in
four steps. Step 1 translates the user’s demand for optimal
online gaming into a throughput-based utility formulation.
Step 2, ‘Expert Selection,’ involves choosing from available
expert models. Step 3, ‘Inference Combination,’ shows the
normalized evaluations of two selected experts for different
power settings. We can observe that Expert 1 prefers a transmit
power setting of 15 W, whereas Expert 2 proposes a setting
of 20 W. In Step 4, the LLM integrates the decisions of two
expert models by examining the characteristics of OP and DR.
The LLM assesses the power setting evaluations of two expert
models to identify a scheme that balances throughput needs
with energy cost, where the NSP’s utility is maximized.

V. CONCLUSION

We introduced an innovative LLM-enabled MoE framework
to address network optimization challenges in the context of
diverse user requirements. LLM-enabled MoE is achieved by
dynamically selecting and integrating the most appropriate
expert models based on the specific demands of each user task,
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Maximize DR-
based Utility 
Formulation 

Maximize OP-
based Utility 
Formulation 

Step 3: Inference Combination

Available Expert 
Model Set

For power setting: {10W, 15W, 20W, 25W, 30W}
Expert 1’s Normalized Evaluation: {0.17, 1, 0.6, 0.48, 0}
Expert 2’s Normalized Evaluation: {0.8, 0.88, 1, 0.48, 0}

The final combined 
evaluations, after applying 
the dynamic weighting 
scheme to the normalized 
evaluations from Model 1 
and Model 2, for each 
transmit power level are:
•For 10W: 0.655
•For 15W: 0.967
•For 20W: 1.000
•For 25W: 0.592
•For 30W: 0.000
These combined 
evaluations suggest that 
the optimal transmit 
power for maximizing 
utility, which considers 
throughput and the cost of 
power, is 20W. . . . .. . . . .. . . . .
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Fig. 6. NSP’s utility under diverse user requirements and the variations of outage probability, data rate, and throughput with transmit power.

thereby reducing the need to train new AI models for each
unique problem. The effectiveness and efficiency of LLM-
enabled MoE were demonstrated through empirical testing on
a maze navigation task and an NSP utility maximization task,
showing its practical applicability and adaptability to complex
networking systems. The results indicate a promising direction
for future research in intelligent networking, where the synergy
between LLMs and MoE can lead to more sustainable and
user-centric network optimization solutions.

APPENDIX A
PROOF OF PROPOSITION 1

The OP is defined as the probability that the received
SNR falls below a given threshold γth. Thus, the OP can be
expressed as OP = FSNR(γth)=

∫ γth

0
fSNR (z) dz. With the

help of (7), we obtain

OP =

(
σ2

PD−α

)M

Γ (M) θM

∫ γth

0

zM−1e−
σ2z

θPD−α dz (A-1)

According to [9, eq. (8.381.8)], the integral part in OP can be
solved as∫ γth

0

zM−1e−
σ2z

θPD−α dz =
Γ
(
M, σ2

θPD−α γth

)
(

σ2

θPD−α

)M . (A-2)

Substituting (A-2) into (A-1), we obtain (8).

APPENDIX B
PROOF OF PROPOSITION 2

The DR is defined as DR = B
∫∞
0

log2(1 + z)fSNR (z) dz.
With the help of (7), we have

DR =
B

Γ (M)

(
σ2

θPD−α

)M

IB1
, (B-1)

where IB1
=

∫∞
0

log2 (1 + z) zM−1e−
σ2z

θPD−α dz. According
to [10, eq. (01.04.07.0002.01)], we have

log2 (1 + z) =
1

2πi

∫
L

Γ (s+ 1)Γ2 (−s) z−s

Γ (1− s)
ds, (B-2)

where i =
√
−1, the integration path of L1 goes from σL −

i∞ to σL + i∞ and σ ∈ R. Substituting (B-2) into IB1
and

exchanging the order of integration, we have

IB1
=

1

2πi

∫
L

Γ (s+ 1)Γ2 (−s)

Γ (1− s)
IB2

ds, (B-3)

where IB2
=

∫∞
0

zM−s−1e−
σ2z

θPD−α dz. By using [9, eq.
(8.381.4)], IB2 can be solved as

IB2 =

(
σ2

θPD−α

)s−M

Γ (M − s) . (B-4)

Substituting IB1 and IB2 into (B-1), we have

DR =
BΓ−1(M)

2πi ln (2)

∫
L

Γ(s+ 1)Γ2(−s)

Γ(1− s) Γ−1(M − s)

(
Dασ2

θP

)s

ds.

(B-5)
Using [9, eq. (9.301)], we can rewrite (B-5) as (9).
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