
Large Language Models for Networking:
Applications, Enabling Techniques, and Challenges

Yudong Huang, Hongyang Du, Xinyuan Zhang, Dusit Niyato, Fellow, IEEE,
Jiawen Kang, Zehui Xiong, Shuo Wang, and Tao Huang, Senior Member, IEEE

Abstract—The rapid evolution of network technologies and
the growing complexity of network tasks necessitate a paradigm
shift in how networks are designed, configured, and managed.
With a wealth of knowledge and expertise, large language models
(LLMs) are one of the most promising candidates. This paper
aims to pave the way for constructing domain-adapted LLMs for
networking. Firstly, we present potential LLM applications for
vertical network fields and showcase the mapping from natural
language to network language. Then, several enabling technolo-
gies are investigated, including parameter-efficient finetuning and
prompt engineering. The insight is that language understanding
and tool usage are both required for network LLMs. Driven
by the idea of embodied intelligence, we propose the ChatNet, a
domain-adapted network LLM framework with access to various
external network tools. ChatNet can reduce the time required
for burdensome network planning tasks significantly, leading to
a substantial improvement in efficiency. Finally, key challenges
and future research directions are highlighted.

Index Terms—Large Language Models, Generative AI, Intent-
driven Networking, Network Intelligence.

I. INTRODUCTION

Generative artificial intelligence (AI) technology is regarded
as one of the most inspiring breakthroughs in the intelligent
era. Through outstanding reasoning, generalization, and emer-
gent abilities, large language models (LLMs) with billions of
model parameters have shown great commercial value and
technical potential, such as text-to-text, text-to-image, and text-
to-code. The ChatGPT gains 1 million users within just one
week, and open source LLMs (e.g., GPT-2, LLaMA, and
BLOOM) are emerging one after another.

In particular, domain-adapted LLMs have been successfully

Y. Huang and X. Zhang are with the State Key Laboratory of Networking
and Switching Technology, BUPT, Beijing, 100876, P.R. China (e-mail:
hyduni@bupt.edu.cn, zhangxinyuan0181@bupt.edu.cn).

H. Du and D. Niyato are with the School of Computer Science
and Engineering, Nanyang Technological University, Singapore (e-mail:
hongyang001@e.ntu.edu.sg, dniyato@ntu.edu.sg).

J. Kang is with the School of Automation, Guangdong University of
Technology, China (e-mail: kavinkang@gdut.edu.cn).

Z. Xiong is with Information Systems Technology and Design (ISTD)
Pillar, Singapore University of Technology and Design, Singapore (email:
zehui xiong@sutd.edu.sg).

S. Wang and T. Huang are with the State Key Laboratory of Network-
ing and Switching Technology, BUPT, Beijing, 100876, P.R. China, and
the Purple Mountain Laboratories, Nanjing, 211111, P.R. China (e-mail:
shuowang@bupt.edu.cn, htao@bupt.edu.cn).

utilized in robot embodied intelligence12, chip design3, and
protein structure generation45. Generative LLMs can compress
information features and vectorize massive knowledge as
tokens, thereby aiding or even replacing humans in conceptual
understanding, logical reasoning, and decision-making. Intu-
itively, this makes it possible to efficiently complete network
tasks through natural language interaction with intelligent ma-
chines, while implementing domain-adapted LLMs for vertical
networking fields becomes an important research challenge.

Before the birth of LLMs, many research efforts trained
task-specific AI models to express the paradigm of intent-
driven networking. For instance, by leveraging a sequence-
to-sequence learning model, a chatbot named Lumi [1] was
proposed to extract entities from the operator utterances,
where these entities are further translated into network intent
language and deployable network policies. To reduce the con-
figuration complexity of Access Control List (ACL) rules, Lan-
guage for ACL Intents (LAI) [2] was designed with specific
grammar that contains three parts of region, requirement, and
command. In [3], the authors realized automated management
of heterogeneous vendor-specific devices. It adopts the Bidi-
rectional Encoder Representations from Transformers (BERT)
model and learns directly from various devices’ manuals to
produce unified network data models.

Although these schemes perform well in certain network
tasks and scenarios, there are several limitations: 1) Lack of
generalization. An AI model trained on a specific dataset may
perform poorly on new or unseen network tasks. The lack
of generalization ability prevents the AI model from being
deployed in real network scenarios. 2) Huge training costs.
Training takes days or even months, as well as huge computing
resources and labor costs, making it uneconomical to build
an AI model from scratch. 3) Hard to integrate. Existing
intent-driven methods are limited to semantic conversion,
which struggles to integrate with a wide range of off-the-shelf
techniques (e.g., network simulator and search engine) and
tools (e.g., solver, code interpreter, and visualization platform).

The key point is that network language exists formal rules,
protocols, mathematical expressions, and formula constraints,

1Google PaLM-E: https://palm-e.github.io/
2ROS-LLM: https://github.com/Auromix/ROS-LLM
3NVIDIA ChipNeMo: https://research.nvidia.com/publication/2023-

10 chipnemo-domain-adapted-llms-chip-design
4AlphaFold: https://github.com/google-deepmind/alphafold
5ESM-2: https://github.com/facebookresearch/esm

ar
X

iv
:2

31
1.

17
47

4v
1

 [
cs

.N
I]

 2
9

N
ov

 2
02

3

…

Network design Network diagnosis Network Configuration Network Security

(a) LLM applications for vertical network fields

(b) Generative Pretrained Transformer

(c) Domain-adapted
LLMs for networking

Pretrained
LLMs

Trillions tokens
of Internet data
105 – 106 GPU hrs

Finetuning with massive
network knowledge

Domain-
adapted LLMs

Thousands GPU hrs

ChatNet

Inference

Mechanism

Plug-and-play
tool kits

…

Prompt engineering

Support

· Zero shot

· Few shot

· CoT, RAG

LLaMA

…

Prompts

Results

Prompts

Results

Prompts

Results

Prompts

Results

Give me a network capacity
planning scheme, traffic
matrix is … constraints
are… minimize the costs …

Sure, I'd be happy to help!
The following is the scheme

15G

10G

20G

5G

10G

5G

20G15G

Application x has a lot of
packet loss, please check
the network status and
output a diagnostic report…

The link L1 on switch S2 is
interrupted. May I migrate x
to the backup path?

x
Backup pathS2

L1

There is a new Cisco device
with brand serial number…
Please configure it to access
the SDN controller

Manual Commands Config

According to the device
manual… the configuration
commands are </>… done!

Capture traffic of mirror port P,
use Wireshark to parse packet
protocol, issue firewall policies
to prevent malicious attacks

Parser/Tools

Policy

Traffic Deny

Ok! First, the captured traffic
is … After parse … Finally,
the policies are generated …

I think the network status

is good ⟨𝐸𝑂 ⟩𝑆

is good

Layer 1

Layer L
Iter 1 Iter 2 Iter 3

… … … … … …

⨁

X"

Q = X") 𝑊#
"

K= X") 𝑊$
"

V= X") 𝑊%
"

𝐴ttention 𝑄, 𝐾, 𝑉 =
softmax #$!

&!
V

Input

LayerNorm

Output

⨁

MLP

LayerNorm

QKV Linear

Multi-Head Attention

API

weight	matrix

FFNEmbeddings

Frozen
weights

Tunable

Fig. 1: Applications, mechanisms, and enabling techniques for domain-adapted network LLMs. (a) Potential network LLM
applications. (b) Working mechanisms of Generative Pretrained Transformer. (c) Finetuning process and prompt engineering.

rather than plain text of natural language. Fortunately, LLMs
are expected to continuously learn updated world knowledge
and comprehensively utilize tools through application pro-
gramming interface (API). Thus, arbitrary complex network
tasks could be completed by calling LLMs with a combination
of plug-and-play functional components. In this paper, we
target to pave the way for constructing domain-adapted LLMs
for networking, including applications in network design, net-
work diagnosis, network configuration, and network security.
We envision that LLM-based network intelligence will be
ubiquitous and reshape future network infrastructure. The main
contributions of this article are:

• We analyze the features of natural language and network
language, and showcase typical intent conversion patterns.

• We present the enabling techniques of domain-adapted
LLMs for networking, including pre-training, finetuning, in-
ference, and prompt engineering.

• We propose a conceptual framework, named ChatNet,
with essential components of analyzer, planner, calculator, and
executor, to express the LLM-based network intelligence.

• We conduct a case study of LLM-based network planning,
where ChatNet can understand intents and generate visual ca-
pacity schemes with changing traffic matrices and constraints.

The rest of the article is organized as follows. We commence
with the applications of LLMs for networking, and exhibit the
instances of network language. Next, we analyze the enabling
techniques of domain-adapted LLMs for networking. Then the
key functional components of ChatNet are detailed. Following
that, we give the case study and analyze the challenges.

Finally, we draw the main conclusions.

II. APPLICATIONS OF LLM IN NETWORKING

This section overviews the promising LLM applications for
vertical network fields, emphasizing the discrepancy between
natural language and network language.

A. Potential LLM Applications for Vertical Network Fields

Developing network systems and managing network in-
frastructure are knowledge-intensive and labor-intensive in-
dustries, which necessitate a lot of expert experience and
manual operations. Previously, network intelligence was frag-
mented, residing in disparate small models, such as Deep
Neural Network, Long Short-Term Memory, and Deep Rein-
forcement Learning. Each model was independently deployed
within specific environments, such as intelligent assistants for
customer service, adaptive routing algorithms for improving
quality of service (QoS), and definite configuration synthesis
modules for alleviating manual errors. LLMs promise to
unify network intelligence through common natural language
interfaces, making the network itself a generalist to understand
the knowledge and master the tools. As shown in Fig. 1(a),
we classify potential applications of LLMs in network vertical
fields as follows.

1) Network Design: By processing vast datasets encom-
passing network performance metrics, equipment specifica-
tions, and historical design patterns, LLMs can assist engineers
in equipment selection, network planning, protocol formula-

TABLE I: Mapping of natural language intents to typical network language implementations

Natural Language (Intent) Network Language Characteristics Examples of Mapping Relationships

“Restrict access to the server at
192.168.1.5 from all external IPs”

Access Control List
(ACL)

Control traffic based on
IPs, protocols, ports, etc.

deny ip any 192.168.1.5.

“Set up the new router to prioritize VoIP
traffic for better call quality”

Command Line Interface
(CLI) / Policy

Configure network
devices

class-map VOIP,
policy-map VOIP-Policy

“Automatically adapt to changes in
topology without manual reconfiguration”

YANG Model / XML /
JSON

Define data structure for
network management.

⟨interface⟩
⟨name⟩10GE 1/0/1⟨/name⟩

“Parse all TCP packets and detect
malicious and spoofed connections”

Protocols (e.g., TCP,
UDP, IP)

Define secure data
exchange rules

IP header| TCP header| Payload

“Ensure the network does not exceed 80%
capacity during 9 AM to 5 PM”

Mathematical Formulas
and Constraints

Constraints manage
network performance

if (time≥ 9 AM and time ≤ 5 PM)
max_load ≤ 0.8 * total_capacity

tion, and many other aspects of network design6. In equipment
selection, LLMs could analyze compatibility requirements,
performance benchmarks, and cost considerations, providing
recommendations that align with specific network objectives.
For network planning, LLMs may simulate various network
schemes, predict potential bottlenecks, and suggest optimal
layouts that balance efficiency, scalability, and resilience.

2) Network Diagnosis: Troubleshooting is a tedious and
burdensome task for network operators. Especially in large-
scale wide-area networks, it requires coordination between dif-
ferent departments across multiple regions, while applications
still suffer from inexplicable network failures or performance
degradation, and are threatened with hundreds of millions of
financial losses. By integrating LLMs into network diagnostic
systems7, LLMs are capable of generating fault reports based
on network status information, accelerating fault location, and
giving reasonable processing suggestions based on the report
analysis and historical operational data.

3) Network Configuration: There are a large number of
heterogeneous devices in the network, e.g., switches, routers,
and middleware. Due to vendor-specific device models, signif-
icant expert effort is required to learn the user manuals, collect
suitable commands, validate configuration templates, and map
template parameters to the controller database. In this process,
even a single ACL misconfiguration may lead to network
disruptions. Considering the growing heterogeneous cloud net-
works with plenty of computing and storage devices that also
need to be managed, a unified natural language configuration
interface8 is essential for simplifying the configuration process
and enabling self-configured networks.

4) Network Security: Networks often face various potential
security issues, such as distributed denial-of-service (DDoS)
attacks, address spoofing, and data leakage. Protecting the
network from malicious attacks combines a series of oper-
ations, such as security assessment, vulnerability scanning,
intrusion detection and defense. LLMs are powerful interactive

6LossLeaP for traffic prediction and capacity forecasting:
https://github.com/alcoimdea/LossLeaP

7Juniper Marvis: https://www.juniper.net/us/en/products/cloud-
services/virtual-network-assistant.html

8Huawei NAssim: https://github.com/AmyWorkspace/nassim

platforms to access diverse security tools and systems9. For
instance, guided by logically rigorous prompts, LLMs may
complete the abnormal traffic denying tasks by calling the
parse tool of Wireshark and updating the policy to firewalls.

B. From Natural Language to Network Language

As depicted in Table I, different from the plain text of
natural language, the network language contains more non-
standardized formats and symbols, from the high-level man-
agement policy to the low-level Access Control List (ACL),
Command Line Interface (CLI), and data modeling language
(e.g., YANG model, XML, and JSON). Traditional mapping
methods are restricted to formalized translations, e.g., entity
abstraction and template filling. In contrast, LLMs can pro-
vide better network QoE performance by offering customized
responses to specific human-related natural language inputs.
Moreover, the network language has domain-specific nouns,
protocols, and rules, as well as mathematical constraints,
where LLMs are prone to “illusion” due to ambiguous con-
cepts or “babbling” due to forgetting the relevance of the
context. Thus, our first insight is that we can finetune the LLMs
with massive network knowledge to enable domain-adapted
network LLMs, and Retrieval Augment based on accessing
external documents (e.g., device manuals and status logs) will
benefit mapping the natural language to the network language.

In addition, completing network tasks are complex and
error-prone process, which requires not only semantics cor-
rectness but also being practically deployable. To address this
issue, the intent refinement [4] was proposed to guarantee
the accuracy and completeness of the translation from the
declarative intent to network primitives, with methods like
Bi-LSTM and knowledge-graph. The network verification
[5] further checks the conflicting policies and validates the
feasibility of results with various network tools. However,
assembling disparate tools and approaches in intent-driven
networking is still challenging. In this paper, we consider the
generative pre-trained transformer (GPT) techniques of LLMs
to be powerful enough to learn the usage of tools, as GPT-
4 has released the assistant APIs10 for easily constructing

9Google Cloud Security AI Workbench and Sec-PaLM 2:
https://cloud.google.com/security/ai

10OpenAI assistants API: https://platform.openai.com/docs/assistants/overview

TABLE II: An overview of studies for LLMs with intent-driven networking (IDN) and network embodied intelligence (NEI).

Article Contributions IDN LLMs Finetuning Prompt NEI

LLM for
wireless [7]

Introduce applications of LLMs in future wireless communications,
including designing, training, testing, and deploying Telecom LLMs.

√ √

AIGN [8] A generative network system that can generate customized network
solutions with the diffusion model-based learning approach.

√ √

NetGPT [9] A collaborative cloud-edge methodology towards personalized LLM
services and native-AI network architecture.

√ √ √

Ours ChatNet Introduce domain-adapted LLMs for vertical network fields and
propose the network embodied intelligence.

√ √ √ √ √

customized GPT applications. Thus, our second insight is
that domain-adapted network LLMs can access external tools
[6], such as search engines, data analyzers, mathematical
solvers, and network tools, to automate any complex tasks,
such as processing time series data, parsing protocols, and
constructing mathematical models. Then, we call these kinds
of network LLMs as ChatNet.

III. DOMAIN-ADAPTED LLMS FOR NETWORKING

Motivated by the above issues and trends, this section
analyzes the enabling techniques for network LLM, especially
specific design problems for LLMs to make the LLM models
optimized and suitable for network applications, and several
assessment methods in prompt engineering are derived.

A. Enabling Techniques for Network LLMs

We divide the enabling techniques for network LLMs into
three categories: pre-training, finetuning, and inference. The
pre-training part presents the working mechanism of LLMs.
Based on open-source vanilla LLMs, finetuning is the most
important step in establishing domain-adapted network LLMs.

1) Generative Pre-trained Transformer: The training of
LLMs involves large-scale unsupervised learning, where the
model is pre-trained on extensive text corpora (∼PBs) for
105 ∼ 106 GPU hours, learning to predict the next word
in a sentence. As shown in Fig. 1(b), the input is word
embeddings, which goes through all layers of the GPT. Each
layer mainly consists of a multi-head attention module and
a position-wise feed-forward network (FFN). The multi-head
attention mechanism utilizes multiple attention processes to
simultaneously computes the relevance of each word in a
sentence to every other word, using a set of Query (Q), Key
(K), and Value (V) vectors and the intermediate result xl.
The outputs of these attention heads are then concatenated
and linearly transformed to produce next-token probabilities.
A single training run would cost millions of dollars, while
each thousand API calls cost less than one dollar for users.

2) Parameter-efficient Finetuning: Since training LLMs
from scratch is prohibitively costly and calling third-party
LLMs via APIs poses data security risks, finetuning open-
source LLMs is a viable candidate for building domain-
adapted network LLMs. As shown in Fig. 1(c), parameter-
efficient finetuning refers to freezing most of the pretrained
weights to adjust specific layers or adding additional tunable

parameters. For instance, Low-Rank Adaptation (LoRA) intro-
duces low-rank matrices to approximate the changes needed in
the model’s weights. Compared to full-parameter approaches,
LoRA strikes a balance between maintaining the general
capabilities of the original model and adapting it to specific
network domains and network tasks.

Particularly, the success of finetuning largely depends on the
quality of data source and instruction datasets. Network data
collection encompassed a variety of operational reports, user
manuals, scripting languages, protocol descriptions, debug-
ging logs, and configuration files. Standardizing the datasets
includes a series of processes, such as cleaning, filtering,
categorization, normalization, and anonymization. Moreover,
a domain-adapted tokenizer can be trained to improve the
tokenization efficiency, by adding new tokens for domain-
specific network terms, such as keywords commonly found
in network protocols. To perform supervised finetuning on the
domain-adapted network LLMs, high-quality network instruc-
tion datasets need to be established for specific network tasks.

3) Context-aware Inference: More than a mapper from
natural language to network language, domain-adapted net-
work LLMs have unprecedented in-context learning and multi-
turn dialogue capabilities. Context-aware inference means that
we can continuously provide new prompts to guide LLMs to
perform logical reasoning, avoiding the repeated construction
of preconditions and environments. Recently, the GPT-4 Turbo
model has supported a context window of 128K tokens,
where more than 300 pages of text can be fitted in a single
prompt. This opens up possibilities for LLM-based network
applications with massive information analysis and processing.
The “Emergent” abilities of LLMs have great potential to
intelligently create novel designs, mechanisms, and protocols
even unseen in existing network environments.

B. Prompt Engineering for Assessment

Effective prompt engineering is crucial for maximizing the
potential of network LLMs in various applications, involving
crafting questions or statements that guide the LLMs to pro-
duce the desired output. Especially for complex network tasks,
the prompt should be clear with sufficient context, such as
satisfying specific constraints and response formats. Multiple
choice questions are a widely accepted assessment format for
LLMs. The authors of [10] collected a TeleQnA dataset with
10000 questions and answers, serving as an evaluation tool for

User: Tasks, Status, Constraints

-You are a network capacity planner…
-The traffic matrices are as attached…
-The constraints are bandwidth capacity
constraints and optical capacity constraints…
-The target is to minimize the costs … …
-Draw the IP and optical network topology.

Upload Files

ChatNet
… …

Network capacity plan is to design adequate
resources to handle data traffic …
We can use PuLP or Cplex to solve constraints.
…
In Python, we can use libraries such as NetworkX
for network topology creation and manipulation,
and Matplotlib or Graphviz for visualization.

Concepts and Tools

L = { 𝐿", 𝐿$, 𝐿% }

Step 1: Read the first traffic matrix in the file.
Step 2: Calculate the network capacity scheme.
Step 3: Draw the IP and optical network topology.
Step 4: Read the second traffic matrix in the file.
… …
[You have four actions: add a fiber, delete a fiber,
add 1 Gbps capacity, reduce 1 Gbps capacity] …
Step k: add 1 Gbps capacity for link L.
Step k+1: Calculate the total costs.
… …

Inference

Cost = ∑!"#$ 𝐶!"#$ × 𝑐𝑜𝑠𝑡%& + ∑'"()* 𝑐𝑜𝑠𝑡'"()*

s.t.
𝐶!"#$ ≥ ∑'!+,∈ !"#$𝑇𝑟𝑎𝑓𝑓𝑖𝑐 (𝑓𝑙𝑜𝑤, 𝑙𝑖𝑛𝑘)

and ∑!"#$∈./012 𝐶!"#$ × 𝑆'"()* ≤ 𝑀'"()*

from docplex.mp.model import Model
… … mdl = Model() … mdl.solve()

[Incorporate
human intervention]

Scripts

import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
… …
def add_fiber(graph, u, v):
… …
def add_capacity(graph, u, v):
… …
nx.draw(G_fiber, G_ip)

Heavy-loaded
Light-loaded

IP layer
Fiber layer

… …

… …

Calculator

Planner
Analyzer Executor

Results
with Traffic Matrix n

… …

with Traffic Matrix 1
… …

Link capacity scheme

Examples of final outputs

P = { 𝑃', 𝑃(, 𝑃$ }

Fig. 2: The ChatNet consists of the analyzer, planner, calculator, and executor, each of which is powered by a network LLM.
Under the case study of network planning, ChatNet is fed with prompts and ultimately outputs diverse capacity schemes.

assessing the knowledge of LLMs in the telecommunications
domain. In [11], a NetEval dataset with 5732 questions was
constructed to measure the comprehensive capabilities of 26
publicly available LLMs in network operations. The following
are several commonly used prompt methods.

1) Zero Shot and Few Shot: Zero-shot prompts only con-
tain the task description and test questions, which are suitable
for simple networking tasks, such as explaining concepts in
technical specifications. The few-shot prompts are slightly
more complex. It includes a small set of examples (usually
one to three) that demonstrate the desired task or answer
format. These examples serve as a mini-training set, guiding
the model to understand the context and the specific nature of
the response required. In the network fields, these examples
might be brief descriptions of network configurations, trou-
bleshooting scenarios, or protocol interactions, followed by
the query that requires a similar response.

2) Chain of Thought: Chain-of-Thought (CoT) [12] en-
ables LLMs to tackle complex arithmetic, commonsense, and
symbolic reasoning tasks. This approach encourages the LLMs
to follow a step-by-step reasoning process, akin to how a
human might break down a problem. By using CoT prompting,
LLMs can be guided to systematically analyze a networking
problem. For example, in diagnosing a network issue, the
prompt can be engineered to lead the model through a series
of diagnostic steps, considering various factors like network
topology, hardware status, and software configurations. More-
over, CoT prompts can be designed to facilitate the cascading
use of plug-and-play network tools, empowering LLMs from
mere answer generators into network experts who are capable
of tools using, logical reasoning, and problem-solving.

3) Retrieval-Augmented Generation: Retrieval-

Augmented Generation (RAG) combines LLMs with
information retrieval techniques, notably vector retrieval, to
enhance the model’s memory and factual accuracy. When
a query is received, the model first performs a semantic
search across a vast database, selecting text pieces that are
semantically relevant to the query. This selection is facilitated
by semantic indexing, which efficiently organizes and
retrieves data based on its meaning rather than just keyword
matching. The retrieved information is then fed into the LLM
as a part of the prompt, effectively providing the model
with a context-rich background to generate more informed
and accurate responses. With the RAG, we can introduce
up-to-date datasets (e.g., iterative standard drafts and updated
maintenance logs) to LLMs dynamically, eliminating the need
for constant retraining of LLMs with new samples.

IV. CHATNET FRAMEWORK

After domain-adapted enhancement, it may still be a step
away from real implementation of the ChatNet, as knowledge
understanding alone does not directly derive the ability to
use tools. This section provides an in-depth analysis of the
key components required to improve proficiency in utilizing
network tools and proposes the ChatNet Framework. Addition-
ally, we compare ChatNet with other recent studies in Table
II, followed by a case study in network planning scenarios.

A. Essential Components of ChatNet

The utilization of tools is a key indicator of advanced
intelligence, as demonstrated in the behaviors of the human
and the robot embodied intelligence [13]. In the same vein,
the ChatNet should master both the language understanding
and the tool usage, based on the following four fundamental
modules of analyzer, planner, calculator, and executor.

1) Analyzer: Powered by network LLMs, the analyzer is de-
signed to extract key concepts, tools, and their relationships to
assess the feasibility of network tasks. Generally, the analyzer
is fed with a prompt of natural language descriptions L that
should cover the range of {LT , LS , LC}, where LT is the task
description, LS is the network state, and LC denotes network
constraints. Moreover, there is an additional file interface for
uploading datasets and linking files.

2) Planner: The planner reasons out the necessary step-by-
step process to complete the network tasks, where the planning
space P is defined by sets {PL, PA, PS}. PL depicts the
planning logic, such as simple sequence or loop steps. PA

is a collection of customizable operations and actions, such
as reading files and accessing tools. PS denotes the skills
that are needed to leverage specific network tools. It is worth
noting that the proposed module is serving as plan creation,
rather than plan execution. This means that users can conduct
multiple rounds of dialogue with the planner through the CoT,
and even modify the plan directly.

3) Calculator: LLMs are not good at network mathematic
and formulation, while there are complex numerical calcu-
lations and model constraints in the network system. Thus,
LLMs must have an additional calculation module to compute
parameters for each step. For instance, the calculator can
invoke programming language to implement simple arithmetic
operations, or import solvers to optimize constrained models.
Network LLMs can generate useful scripts based on prompts
to speed up the network modeling process. Some human
intervention is inevitable for the collaboration of the calculator
and the planner considering complex network tasks.

4) Executor: The executor is responsible for outputting
the final results. Typically, the executor generates networking
schemes and protocols, as well as network configuration
commands (e.g., ACL and CLI) by coding. Through unified
API of network LLMs, the executor can also be integrated into
network emulators, controllers, and verification tools.

B. Case Study under Network Planning

We simulate a prototype of ChatNet with the support
of GPT-4, where four GPT-4 models are initially prompted
as analyzer, planner, calculator, and executor, respectively.
As illustrated in Fig. 2, the prompts position the role of
analyzer as a network planner, and then inform it of the
traffic matrices, capacity constraints, optimization goals, and
desired task outputs. Firstly, the analyzer explains network
capacity planning and points out the required tools, such as
Cplex for constraint solving, NetworkX for network topology
creation, and Matplotlib for visualization. These outputs are
manually delivered to other modules as input prompts. Then,
the planner module decouples tasks and starts executing them
step by step, which mainly includes reading traffic matrix
files, calculating network capacity solutions, and drawing IP
and optical network topology. Moreover, personalized actions
(e.g., add the fiber or add the capacity) can be designated
in the planner to instruct further modifications to the network
topology. The calculation formula of the cost and optimization

Analyzer Planner Calculator Executor
The components

0.0

0.2

0.4

0.6

0.8

1.0

R
el
at
iv
e
LL

M
S
co
re

Zero-shot
Few-shot

CoT
RAG

0

2

4

6

8

10

12

R
el
at
iv
e
nu

m
be

ro
fH

I

Relative HI

Fig. 3: Four prompt methods of zero-shot, few shot, CoT, and
RAG are compared. The relative LLM score and number of
human intervention (HI) are adopted to evaluate the perfor-
mance of the four components of ChatNet.

model are stored in the calculator module prior, which is a
combination of scripts provided by ChatNet and human inter-
vention. Finally, the executor generates customized network
capacity solutions, such as using colors to display different
congestion levels, and using dotted and solid lines to display
hierarchical IP and optical network topologies.

Due to the lack of task benchmarks and instruction datasets
in network domains, we combine the LLM evaluators11 [14]
and expert evaluation [15] to briefly assess the four compo-
nents under the prompt methods of zero-shot, few shot, CoT,
and RAG. The scoring is normalized to a range of [0, 1].
In this scale, scores of 0.8, 0.6, and 0.4 indicate that the
results align with expectations to a high, moderate, and just
adequate degree, respectively. A score of 0.2 signifies that
the results do not match expectations. If automatic prompt
delivery can be achieved between modules, more objective
metrics could be used to evaluate the overall performance of
ChatNet, such as high-level planning (HLP)12 accuracy and
the percentage of completed tasks. As shown in Fig. 3, we
find that the analyzer always achieved a score higher than
0.8 with no more than one count of human intervention (HI),
while the calculator is the bottleneck of the entire framework
and requires multiple human interventions. When the RAG
is employed by uploading a specific network planning design
document, the calculator is capable of extracting mathematical
constraints and providing a model that is basiclly correct.
Moreover, the CoT can improve the performance of the
planner to some extent. It is worth noting that LLMs are
prone to errors during the inference process, and currently
do not match expert performance on network planning tasks.
However, LLMs reduce the time required for burdensome
network planning tasks, which greatly improves efficiency.

11An instance of the LLM evaluator to score the output quality of the
analyzer module is at https://github.com/Hyduni001/ChatNet.

12LLM-Planner: https://osu-nlp-group.github.io/LLM-Planner/

Building extensive network tasks and instructions to evaluate a
variety of domain-adapted network LLMs will be future work.

V. CHALLENGES AND FUTURE PROSPECTS

In this section, we analyze the challenges brought by the
domain-adapted network LLMs and highlight the potential
research directions.

A. Training Multi-modal Network LLMs

The integration of diverse data types, such as text, images,
and network-specific codes, requires a sophisticated training
process to construct multi-modal LLMs for networking. The
model must be adept at processing and interpreting this hetero-
geneous data in a way that accurately reflects the complexities
of network environments. Moreover, there is an issue of
maintaining model relevance over time. Network technologies
and protocols evolve rapidly, necessitating continuous updates
to the training data. Balancing these factors while minimizing
training costs and computational resources is a significant
challenge, which must be addressed to fully earth the potential
of multi-modal network LLMs.

B. Developing Network LLM Plugins

The development of network LLM plugins opens a new
frontier in network management and design. These plugins are
intended to extend the capabilities of LLMs, allowing them to
interact more effectively with various network components and
systems. The challenge lies in designing plugins that are both
flexible enough to accommodate a wide range of network ar-
chitectures and specific enough to provide meaningful insights
and actions. Interoperability is a key concern, as these plugins
must seamlessly integrate with existing network management
tools and protocols. Additionally, ensuring the security and
reliability of these plugins is paramount.

C. Enabling Network Embodied Intelligence

The realization of network embodied intelligence through
LLMs holds the promise of more responsive, efficient, and
self-optimizing network systems, representing a significant
leap forward in network fields. For instance, it would be
meaningful to integrate network LLMs into decision-making
systems, such as the network planning system with the deep
reinforcement learning. Furthermore, one fundamental issue
is the transparency and explainability, since LLMs may cre-
ate fake network designs and configurations. Similar to the
intelligence from L0 to L5 in autonomous driving, network
embodied intelligence needs to be considered in layers, e.g.,
from assisting the netowrk operators to completely replacing
the network experts.

VI. CONCLUSIONS

This article has studied the applications of LLMs for
networking. We summarized the enabling techniques for es-
tablishing domain-adapted network LLMs and analyzed the
prompt engineering of zero-shot, few shot, CoT, and RAG. A
novel ChatNet framework is proposed to exhibit the network
embodied intelligence and a case study has been conducted

under the network capacity planning scenario. Finally, the
challenges, such as training multi-modal network LLMs, and
developing network LLM plugins, are discussed. We hope that
ChatNet can serve as an inspiration for future research.

REFERENCES

[1] A. S. Jacobs, R. J. Pfitscher, R. H. Ribeiro, R. A. Ferreira, L. Z.
Granville, and S. G. Rao, “Deploying natural language intents with
lumi,” in Proceedings of the ACM SIGCOMM Conference Posters and
Demos, 2019, p. 82–84.

[2] B. Tian, X. Zhang, E. Zhai, H. H. Liu, Q. Ye, C. Wang, X. Wu, Z. Ji,
Y. Sang, M. Zhang et al., “Safely and automatically updating in-network
acl configurations with intent language,” in Proceedings of the ACM
SIGCOMM Conference, 2019, pp. 214–226.

[3] H. Chen, Y. Miao, L. Chen, H. Sun, H. Xu, L. Liu, G. Zhang, and
W. Wang, “Software-defined network assimilation: Bridging the last mile
towards centralized network configuration management with nassim,” in
Proceedings of the ACM SIGCOMM Conference, 2022, p. 281–297.

[4] Y. Ouyang, C. Yang, Y. Song, X. Mi, and M. Guizani, “A brief survey
and implementation on refinement for intent-driven networking,” IEEE
Network, vol. 35, no. 6, pp. 75–83, 2021.

[5] Y. Song, C. Yang, J. Zhang, X. Mi, and D. Niyato, “Full-life cycle
intent-driven network verification: Challenges and approaches,” IEEE
Network, pp. 1–8, 2022.

[6] D. Gao, L. Ji, L. Zhou, K. Q. Lin, J. Chen, Z. Fan, and M. Z. Shou,
“AssistGPT: A general multi-modal assistant that can plan, execute,
inspect, and learn,” in arXiv 2306.08640, 2023.

[7] L. Bariah, Q. Zhao, H. Zou, Y. Tian, F. Bader, and M. Debbah, “Large
language models for telecom: The next big thing?” in arXiv 2306.10249,
2023.

[8] Y. Huang, M. Xu, X. Zhang, D. Niyato, Z. Xiong, S. Wang, and
T. Huang, “AI-generated network design: A diffusion model-based
learning approach,” IEEE Network, pp. 1–1, 2023.

[9] Y. Chen, R. Li, Z. Zhao, C. Peng, J. Wu, E. Hossain, and H. Zhang,
“Netgpt: A native-ai network architecture beyond provisioning person-
alized generative services,” in arXiv 2307.06148, 2023.

[10] A. Maatouk, F. Ayed, N. Piovesan, A. D. Domenico, M. Debbah, and Z.-
Q. Luo, “Teleqna: A benchmark dataset to assess large language models
telecommunications knowledge,” in arXiv 2310.15051, 2023.

[11] Y. Miao, Y. Bai, L. Chen, D. Li, H. Sun, X. Wang, Z. Luo, Y. Ren,
D. Sun, X. Xu, Q. Zhang, C. Xiang, and X. Li, “An empirical study
of netops capability of pre-trained large language models,” in arXiv
2309.05557, 2023.

[12] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in Neural Information Processing Systems,
vol. 35, pp. 24 824–24 837, 2022.

[13] M. Xu, P. Huang, W. Yu, S. Liu, X. Zhang, Y. Niu, T. Zhang, F. Xia,
J. Tan, and D. Zhao, “Creative robot tool use with large language
models,” in arXiv 2310.13065, 2023.

[14] J. Wang, Y. Liang, F. Meng, Z. Sun, H. Shi, Z. Li, J. Xu, J. Qu, and
J. Zhou, “Is ChatGPT a good NLG evaluator? a preliminary study,” in
arXiv 2303.04048, 2023.

[15] H. Lee, S. Phatale, H. Mansoor, K. Lu, T. Mesnard, C. Bishop,
V. Carbune, and A. Rastogi, “RLAIF: Scaling reinforcement learning
from human feedback with AI feedback,” in arXiv 2309.00267, 2023.

	Introduction
	Applications of LLM in Networking
	Potential LLM Applications for Vertical Network Fields
	From Natural Language to Network Language

	Domain-adapted LLMs for Networking
	Enabling Techniques for Network LLMs
	Prompt Engineering for Assessment

	ChatNet Framework
	 Essential Components of ChatNet
	Case Study under Network Planning

	Challenges and Future Prospects
	Training Multi-modal Network LLMs
	Developing Network LLM Plugins
	Enabling Network Embodied Intelligence

	Conclusions
	References

