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Abstract—The concept of digital twin (DT), which enables the
creation of a programmable, digital representation of physical
systems, is expected to revolutionize future industries and will lie
at the heart of the vision of a future smart society, namely, Society
5.0, in which high integration between cyber (digital) and physical
spaces is exploited to bring economic and societal advancements.
However, the success of such a DT-driven Society 5.0 requires a
synergistic convergence of artificial intelligence and networking
technologies into an integrated, programmable system that can
coordinate networks of DTs to effectively deliver diverse Society
5.0 services. Prior works remain restricted to either qualitative
study, simple analysis or software implementations of a single DT,
and thus, they cannot provide the highly synergistic integration of
digital and physical spaces as required by Society 5.0. In contrast,
this paper envisions a novel concept of an Internet of Federated
Digital Twins (IoFDT) that holistically integrates heterogeneous
and physically separated DTs representing different Society 5.0
services within a single framework and system. For this concept
of IoFDT, we first introduce a hierarchical architecture that inte-
grates federated DTs through horizontal and vertical interactions,
bridging the cyber and physical spaces to unlock new possibilities.
Then, we discuss the challenges of realizing IoFDT, highlighting
the intricacies across communication, computing, and AI-native
networks while also underscoring potential innovative solutions.
Subsequently, we elaborate on the importance of the implemen-
tation of a unified IoFDT platform that integrates all technical
components and orchestrates their interactions, emphasizing the
necessity of practical experimental platforms with a focus on
real-world applications in areas like smart mobility.

Index Terms—digital twin, continual graph neural networks,
internet of federated digital twins (IoFDT), proof-of-concept

I. INTRODUCTION

Digital twins (DTs) are a transformative technology crafting
faithful digital representations of physical systems, processes,
and dynamics in cyber spaces. This application space enables
DTs to span elements ranging within the Internet of Things
(IoT) to intelligent transportation systems (ITS), healthcare,
and intricate industrial systems across the whole product
life-cycle, including design, manufacturing, distribution, and
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recycling [1]. In essence, a fully realized DT is not just a
static blueprint or simulation of a physical system, but a
dynamic, high-precision, granular replica of a physical system,
including its interactions with the physical system. Thus,
DTs symbolize a harmonious blend of physical and digital
spaces, which departs from the traditional IoT concept, where
interconnectivity is confined among physical objects and data
flows mainly in one way from physical to cyber spaces. DTs
will be an integral part of future applications ranging from
manufacturing to agriculture and enabling the metaverse [2].

DTs will shape the future as a cornerstone of the visionary
concept, Society 5.0 [3]. In Society 5.0, the intertwining
of cyber and physical spaces becomes a determinant for
harmonizing economic advancement with the resolution of
societal challenges. In fact, this cyber and physical synergy
is facilitated through an intricate web of integration that must
consolidate connections between corresponding physical and
cyber spaces while performing precise coordination between
the DTs of diverse applications. DTs, working in synergy,
streamline end-to-end (E2E) operations demanding synchro-
nization across multiple services, such as smart mobility and
automated manufacturing. Hence, DTs can establish intercon-
nections and form cooperative clusters in cyber space, collec-
tively modeling and analyzing their corresponding physical
systems at varying granularities. Therefore, as a milestone
towards enabling Society 5.0, it is necessary to understand
the challenges of synergistically interconnecting multiple DTs
over wireless networks rather than considering each DT in
isolation.

Recent research exploring the synergies between DTs and
wireless systems falls into three main categories. The first
category (e.g., in [4]), constituting a significant portion of
existing research, leverages DTs to create digital represen-
tations for wireless systems (e.g., 5G) to enhance network
management. While these works are beneficial for wireless
systems, they neglect the role of wireless systems in con-
necting and synchronizing multiple DTs. The second category
(e.g., in [5]) studies the deployment of a single, isolated
DT within wireless systems, focusing on individual network-
ing and learning schemes. Clearly, these works fall short
in extrapolating these network mechanisms for a complex
system of interconnected DTs. Finally, some works (e.g., in
[6]) focus on virtual representation of twins, neglecting net-
work constraints and primarily tackling software development
hurdles. Therefore, these approaches fall short of realizing
comprehensive and coordinated E2E DT services in Society
5.0, as current DT technologies lack required features, such
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as scalability and interconnectivity, that are indispensable in
systems of interconnected DTs. Hence, the literature lacks
a comprehensive overview that deals with integrating and
coordinating multiple DTs across various physical systems
with seamless interoperability.

In response to these challenges and to foster interconnec-
tions, coordination, and cooperation among DTs while pre-
serving key performance metrics such as scalability, latency,
efficiency, and privacy, the main contribution of this paper is
to introduce and define a novel, visionary concept called the
Internet of Federated Digital Twins (IoFDT). In essence, the
IoFDT interconnects a comprehensive and federated network
of diverse DTs and smart services, constituting the backbone
of Society 5.0. Each DT within an IoFDT is designed for a
specific system or service, with federation occurring not only
among homogeneous DTs, but broader heterogeneous systems.
Moreover, the IoFDT architecture employs dynamic resource
allocation and modular services that can adjust system de-
mands, ensuring efficient scalability and performance integrity
of the growing network of DTs.

This creates a complex federation of interconnected DTs
across various domains, all linked over wireless systems.
In this framework, a federated DT is created by leveraging
sliced component functions, including sensors, networks, and
computing resources integrated within an IoFDT platform.
The IoFDT coordinates multiple federated DTs and integrates
physically separate, heterogeneous DTs beyond their physical
borders. Fig. 1 illustrates an example of the IoFDT vision
with several DTs. In this example, the connection between
the factory DT and agriculture DT in cyber space enables an
automated food processing plant DT. This unified DT in cyber
space jointly manages agricultural products from farms and
food processing chain in factories. Such integration optimizes
the harvest schedule, production plan, quality control, and
E2E traceability. Other examples requiring an interconnected
IoFDT include various domains: city energy management by
connecting power plant DT with user behavior DT; smart
supply management by linking logistics DT and manufacturing
DT; precision construction by associating construction site
DT with construction machinery DT; and smart preventive
healthcare by connecting user lifestyle DT to the medical
system DT. The IoFDT significantly departs from any existing
DT systems that typically rely on isolated, independent DTs.
The IoFDT has the potential to revolutionize future societies
by providing a backbone for delivering E2E smart services
through the seamless integration of digital and physical spaces.

Towards enabling the IoFDT vision, a confluence of AI, net-
working, computing, and implementation is essential, which
introduces several novel challenges that should be addressed.
The key contributions of this paper are summarized as follows:

• We propose a novel IoFDT framework architecture
marked by its intricate hierarchical structure of DTs that
are not just interconnected but federated while bridging
cyber and physical spaces. This architecture leverages
multi-layered insights, enables operational, systemic, and
predictive analytics from individual DTs to the collective
federation, and thereby enhances decision-making, strate-
gic foresight, and operation in the IoFDT ecosystem.

Fig. 1: An example of the vision of Internet of Federated Digital
Twins over wireless networks.

• We identify multifaceted challenges at the crossroad of
communications, artificial intelligence (AI), and com-
puting, and we put forth potential, novel solutions in
realizing the IoFDT at enhancing synchronization, cross-
layer networking, real-time computing, scalability, secu-
rity, AI learning, AI-native networks, and generalizability
of twins.

• Transitioning from theoretical concepts to practical re-
alization, we outline the implementation of a unified
experimental platform that integrates DT, network, and
computing orchestrator to facilitate seamless interactions
among diverse DTs. We emphasize real-world testing
to validate theoretical models and introduce a compre-
hensive proof-of-concept (PoC) implementation, with an
initial focus on smart mobility, to demonstrate the IoFDT
framework’s feasibility and merit.

The rest of this paper is organized as follows. Section II
presents the overall IoFDT framework. Section III introduces
the enablers and challenges for IoFDT across networking, AI,
and computing. Section IV introduces an experimental IoFDT
platform with experimental applications. Finally, Section V
concludes the paper with future recommendations towards
enabling an IoFDT.

II. IOFDT: FROM INDIVIDUAL DTS TO HIERARCHICAL,
FEDERATED DT NETWORKS

The architecture of the IoFDT consists of a network of
interconnected and federated DTs, as illustrated in Fig. 2.
This topology overcomes limitations inherent in standalone DT
systems, such as lack of interconnectivity, inability to extract
multi-layered insights, limited adaptability, and the absence of
a collaborative ecosystem.

At the center of our IoFDT lies a series of DTs, each of
which serves as a precise digital representation of a physical
object or process, bridging cyber and physical spaces. These
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DTs are strategically arranged in a tiered structure, with each
level reflecting intricacies of the DTs’ functionalities and
degrees of interaction with their physical counterparts. This
hierarchy enables the extraction of rich, multi-layered insights,
such as operational details from a an irrigation machine DT,
systemic understanding of the irrigation system’s impact on
crop growth, and predictive insights on planting cycles and
pest control strategies derived from the collective data of farm
DTs. DTs, diverse as the systems and services they represent,
are not individual but intrinsically linked through a federation.
This DT federation is more than a mere technical connection.
Instead, it acts as a unifying, logical thread that weaves
together distinct DTs, creating a rich tapestry of interactions
and information/knowledge exchange. This shared network
establishes a collaborative ecosystem within the IoFDT. Par-
ticipants in this network, representing various DTs, actively
exchange real-time data, performance metrics, and AI-derived
insights. This continuous exchange not only leverages existing
knowledge, but integrates fresh data, refining the system’s
collective intelligence and adaptability. The DT federation
fosters seamless data synchronization and knowledge sharing
among DTs. For instance, a DT representing an irrigation
system might adjust water distribution based on insights from
another DT monitoring soil moisture. As these DTs interact,
they fine-tune their algorithms, ensuring that their digital repre-
sentations remain aligned with real-world conditions they twin.
In the IoFDT framework, interactions are categorized into two
main types: horizontal interactions, occurring between DTs of
similar hierarchies or functionalities; and vertical interactions,
taking place between DTs across different hierarchical levels,
bridging granular processes to overarching system dynamics.
Next, we describe the horizontal and vertical splits in the
IoFDTs:

A. Horizontal Split

Horizontal interactions within the same levels and clusters
of DTs in the hierarchy are fundamental to the IoFDT, because
they are the key to improving collaboration, learning, and
growth among geographically dispersed DTs. For example,
consider the following scenario: A DT provides real-time crop
yields and readiness information to a logistics DT, which
plans optimal routes for fresh product transportation. Simul-
taneously, a DT for city-based supermarket chain integrates
this information to manage inventory and plan their supply
based on fresh product arrival. Meanwhile, the planting or
harvest plan on farms will be adjusted according to su-
permarket demands. This interaction is not only about data
exchange, but constitutes continuous mutual learning and
growth. Horizontal interaction is strengthened by sophisticated
frameworks of real-time data sharing, advanced analytics, and
AI-driven insights. It enables DTs to catch and understand
other DTs through IoFDT. Furthermore, when multiple DTs,
either homogenous or heterogeneous, form functional clus-
ters, the horizontal interactions also facilitate communication
across DT clusters. In this interconnected, federated ecosys-
tem, geographical distances and different segments become
inconsequential. In a nutshell, the IoFDT effectively shrinks

Fig. 2: Federated DTs and associated platform for smart services in
IoFDT.

the physical world, by bringing diverse twins closer together
in a shared cyber space.

B. Vertical Split

The IoFDT also includes vertical interactions that bind DTs
at higher hierarchical levels with those operating at more gran-
ular levels. While lower-layer DTs offer granular, real-time
data and insights into specific physical systems, upper-layer
DTs aggregate and contextualize this information, providing
a holistic view for strategic decision-making. For instance, in
a smart city, individual DTs might monitor specific services
like traffic, energy, or waste management, with each providing
specific insights into its respective physical system. An overar-
ching city management DT, positioned at a higher hierarchical
level, integrates these insights for decisions on overall resource
allocation, emergency response, and long-term urban planning.
Similarly, in a hospital, while individual DTs focus on specific
departments or patient data, a high-tier healthcare system DT
combines these insights to enhance patient care coordination
to optimize resource distribution and refine overall hospital
operations. This vertical interaction ensures not only that
ground-level detailed insights are considered, but also that
higher-level decisions are effectively disseminated, to maintain
system-wide coherence and efficiency.

Having delineated the foundational framework of IoFDT,
it is essential to address the underlying technical challenges
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and enablers over wireless systems. The intricacies and po-
tential solutions at the intersection of communication, AI, and
computing will be detailed next.

III. CHALLENGES AND ENABLERS FOR IOFDT:
WIRELESS, LEARNING, AND COMPUTING

Despite benefits of an IoFDT, realizing this vision faces
many challenges at the intersection of communication, learn-
ing, and computing.

A. Communications and Networking Challenges

1) Synchronization over the network: Creating and feder-
ating multiple DTs requires real-time data accumulation from
a multitude of physical objects and processes across vast
distances. Meanwhile, modifications in cyber space must be
reflected in almost real-time on the physical counterpart. In
other words, DTs must be synchronized with the physical
space [7]. The twin mandates of IoFDT, i.e., real-time data
collection and actuation, present challenges, because they
require real-time data transmission between devices of various
physical systems and edge/cloud servers through complex,
heterogeneous networks. It is also crucial to synchronize
interactions between multiple DTs, each DT representing a
different aspect or component of a larger system. This further
requires maintaining synchronization of contextual data rele-
vance and operational coherence across DTs. Such demands
could strain existing communication systems, such as 5G and
6G, while requiring them to constantly adjust to dynamics
and requirements of the physical systems, ensuring seamless
coordination between various DTs and physical processes. To
address synchronization challenges, dynamic network slicing
can be developed whereby network resources are adaptively
allocated based on each DT’s requirements. This approach,
illustrated in Fig. 3, optimizes resource allocation within each
slice according to the context and industry-dependent attributes
of the physical system. Evolutionary reinforcement learning
(ERL) [8], combining reinforcement learning (RL) with evo-
lutionary algorithms, could be employed to evolve slicing poli-
cies over time to meet the DT’s dynamic requirements. Also,
here one can exploit the notion of semantic communications
to push forward less data and facilitate synchronization of
DTs [9].

2) Cross-layer networking between DTs: To harness the
benefits of DTs and realize IoFDT for Society 5.0, it is
necessary to address a series of unique, cross-layer networking
challenges inherent in IoFDT. Unlike conventional networks,
the IoFDT requires seamless interaction between various net-
working layers to support the complex functionality of feder-
ated DTs. Main challenges include managing asynchronous
communications between layers and across different DTs,
ensuring data integrity across multiple network protocols, and
orchestrating a responsive flow of information that can adapt to
the rapidly changing states of physical entities represented by
the DTs. These challenges are magnified by diverse natures
of the devices involved, each with different communication
protocols and data formats, which must be unified within

Fig. 3: Resources slicing and orchestration for DTs in IoFDT

a coherent network structure. The need for real-time an-
alytics and decision-making processes based on contextual
information from multiple layers increases the complexity,
and requires a more intelligent and flexible network design
and management. The tailored solution for these challenges
involves network slicing, as shown in Fig. 3, to discern
and dynamically accommodate distinct communication and
processing requirements at each network layer. This includes
the provisioning of network slices with specific cross-layer
functionalities like protocol translation, data prioritization,
and layer-specific security measures. Moreover, by utilizing
a combination of collaborative reinforcement learning (CRL)
and transfer learning, the network can continuously learn from
data flow patterns and adjust slices in real-time, ensuring
optimal cross-layer communication responsive to each DT’s
contextual needs. Such an approach enables dynamic and
intelligent cross-layer networking that effectively sustains the
complex operations of IoFDT to ensure that all network layers
work collaboratively for the DT federation.

B. IoFDT Computing Challenges

1) Real-time computing for data collection and actuation:
Real-time computing in the IoFDT is essential for effectively
coordinating multiple DTs with one another and with their
dynamic physical systems. This requires not only efficient
architectural design, but agile resource allocation strategies
for rapid processing of complex datasets on distributed edge
servers, which often have limitations in computing power. The
challenges in real-time computing are multifaceted. Latency
issues arise from data transmission and processing across dis-
tributed computational nodes, and any delay can degrade the
decision-making. Edge servers must process large-scale data
inflows, potentially causing bottlenecks. The computational
infrastructure and resources require high flexibility, scaling to
meet DTs’ real-time needs. Consider smart mobility services
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in which autonomous vehicles’ safety and efficiency hinge on
immediate sensor data processing and communication with
surrounding infrastructures. Any lag in these processes could
result in outdated decisions, risking safety and operational
inefficiencies. Moreover, when multiple DTs interact, the
challenge escalates as each DT requires data from others in
real-time to make informed decisions. This interdependence
necessitates not only rapid data sharing but synchronized
data processing and analysis across DTs, which demands an
advanced level of computational orchestration for system-wide
coherence and efficiency. To overcome these challenges, a
potential solution is implementing edge computing architec-
tures with specialized accelerators for data-intensive tasks,
such as FPGAs and GPUs, which can significantly enhance
real-time analytics processing at edges. Additionally, employ-
ing predictive resource allocation strategies utilizing machine
learning models to forecast demand and preemptively adjust
resource distribution can improve DTs’ responsiveness. This
predictive approach, combined with flexible edge computing
resources, would minimize latency and enable more effective
real-time computation and actuation for tasks that are critical
to operation and synchronization of DTs, such as immediate
traffic re-routing in connected vehicle networks.

2) Scalability: The scalability of the IoFDT infrastructure
is a key challenge, because the IoFDT encompasses diverse,
geographically dispersed DTs representing increasingly com-
plex and dynamic physical systems. As the number and com-
plexity of DTs grow, computational demands and data volumes
in IoFDT also grow, necessitating a distributed computing
network capable of dynamic adjustment and scaling. Key scal-
ability challenges include developing a computing architecture
ensuring high-throughput data processing and rapid elasticity
for growing and fluctuating workloads, while also being re-
silient to node failures to maintain operational integrity and
system performance. A potential solution to these challenges
lies in advanced distributed computing networks with dynamic
adaptive load balancing, auto-scaling, and resource provision-
ing responding to DTs’ increasing computational demands.
Furthermore, spectral graph theory offers a powerful tool for
modeling the complex network of DT interconnections. By
treating the network as a graph, spectral analysis enables us
to identify the interactivity degrees of DTs and computational
nodes in IoFDT. Such insight allows for optimized resource
allocation, and thereby can optimize network performance
and reduce computational overhead. Essentially, spectral graph
theory also aids streamlining communication routes and prior-
itizing resource distribution to enhance the overall efficiency
and reduce latency in IoFDT.

C. AI Challenges

1) AI Models for IoFDT Design: The IoFDT requires
new AI frameworks for interconnected and dynamic DTs
evolving with data and real-time actuation. At the core, each
DT is an AI model that continuously updates its physical
space twin, and this is where AI is leveraged to create DTs
and the entire IoFDT system. Learning within IoFDT must
consider networking constraints while accurately twinning

distributed physical processes across various dimensions. To
fulfill network-aware AI twinning, AI must be adept at creating
context-aware twin models that adapt with data inflows, and
extract complex interrelations across diverse, heterogeneous
systems. These frameworks must encapsulate the capability
for multidimensional representations that accurately reflect
physical processes and inform network design within system-
wide communication and computing limitations. Moreover,
compared to standalone DTs, generating and leveraging syn-
thetic data for IoFDT to simulate hypothetical yet plausible
scenarios pose greater challenges, as clusters of federated DTs
involve increased complexity of dynamic, diverse, intercon-
nected systems. The adoption of continual graph neural net-
works (CGNNs) [10], combining benefits of continual learning
(CL) with graph neural networks (GNNs) [11], promises to
address these demands. On the one hand, CL provides an agile
incremental learning method with swift model updates [12].
On the other hand, GNNs present an effective method to
model the interrelations between the multi-level DT elements.
Hence, CGNNs can adapt to temporal dynamics and complex
interactions inherent in IoFDT, enhancing the resilience and
adaptability of the network.

2) AI-Native Networks for IoFDT: In parallel, the IoFDT
necessitates AI-native communication networks to manage the
autonomous coordination, synchronization, and connectivity
of various federated DTs. These networks form the IoFDT’s
backbone, and enable not only the information flow but the
actuation back to physical systems. AI techniques here must
ensure seamless operation within communication networks in
the IoFDT, address data’s distributed nature across multiple
devices, and facilitate real-time responses. This requires so-
phisticated orchestrations of network resources that are aware
of the context and constraints in the IoFDT, while maintain-
ing harmonious synchronization between physical and digital
twins for optimized functionality. To address these challenges,
we envision integrating adaptive learning algorithms that not
only keep DTs updated but also enable real-time prediction
and actuation for continuous synchronization between physical
and digital twins in a scalable manner. Additionally, grounding
AI-native networks in causal techniques, e.g., causal reason-
ing, can deepen network behavior understanding, leading to
improved explainability, generalizability, and sustainability of
the network operations, which enhances network performance
for dynamic and interconnected DTs management [13].

3) Generalizability of Twins: Moreover, AI systems within
IoFDT must be able to generalize across new, previously
unseen learning tasks in real-time. Such adaptability is critical
as federated DTs constantly face novel situations and chal-
lenges. IoFDT AI frameworks must swiftly and accurately
adjust learning algorithms and models in response to emerging
tasks to improve federated DTs’ continuous development and
refinement. Leveraging advanced meta-learning and domain
adaption techniques could serve as a viable solution, and the
integration of these techniques could significantly enhance
DTs’ generalizability and evolutionary pace within the IoFDT
ecosystem.
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IV. PRACTICAL IMPLEMENTATION AND REALIZATION OF
IOFDT: PLATFORM AND EXPERIMENTAL FIELD

In addition to theoretical challenges outlined in Section
III, a unified, experimental IoFDT platform is needed to
blend all technical elements and orchestrates their interactions.
Indeed, experiments with practical IoFDT services on a fully
functional experimental platform are indispensable to validate
fundamental research and generate testing data for system
design refinement.

A. Unified IoFDT Platform to Integrate All Elements

We propose an IoFDT platform, as a universal integrator
and orchestrator, to unify all elements in IoFDT for seam-
less interactions. To realize such a platform, three functional
modules become essential: the DT orchestrator, the network
orchestrator, and the computing orchestrator.

DT Orchestrator: This orchestrator manages DTs through-
out life-cycle, including storage, creation, distribution, opera-
tion, and interaction. Central to this module are repositories of
reusable DT functions and knowledge bases (AI models). For
new applications and associated DTs, instead of starting from
the ground up, they leverage pre-existing function modules and
knowledge, accelerating DT development and implementation.
The DT orchestrator distributes and deploys new DTs to
optimized edge or cloud servers based on application scenarios
and QoS requirements. It orchestrates DT interactions in the
IoFDT, including data sharing and learning through DT feder-
alization, data format/protocols coordination, data desensitiza-
tion, and knowledge base management. In this containerization
approach, the orchestrator assembles components to create
DTs. These components, along with function modules, depen-
dencies, configurations, AI models, and desensitized data, are
then packaged into containers using tools such as Docker and
containerd. They are then deployed and run by tools such as
Kubernetes and Docker Swarm. The DT orchestrator, with a
global system view, also decides the federation participation of
new DTs, considering function, service, and resources. A con-
tinuous integration/continuous deployment (CI/CD) pipeline
using automation tools like Jenkins ensures this process for
each DT creation or update. Middle-ware is also necessary
for data interoperability between networks, DTs, and devices
using different data formats/protocols.

Network Orchestrator: This orchestrator manages the data
flow and resource in IoFDT by allocating network resources,
managing diverse communication protocols, and maintaining
network QoS for each DT to collect data, process it, and send
the input back to the physical space in real-time. Software-
defined networking (SDN) and network function virtualization
(NFV) can be employed for dynamic and programmable net-
works through an IoFDT network control plane. To orchestrate
IoFDT networks and enable access to customized virtual
network functions (VNFs) for each DT, SDN controllers
provide a global, real-time, and unified view of resources and
programmable interfaces to manipulate data flows. In practical
implementation, SDN frameworks, such as OpenDaylight,
Open Network Operating System, and Ryu, can be leveraged
to abstract resources in networks, supporting the dynamic

slicing of networks for diverse DTs. RAN and core network
functions are transformed into VNFs and managed by open
platforms, such as Open RAN (O-RAN). An interface between
the chosen SDN controller and the VNF management platform
is necessary to monitor the status of VNFs. By implementing
this composition, the IoFDT network orchestrator maps the re-
sources required by DT to the specific physical infrastructures,
controlling data flows to ensure seamless connectivity.

Computing Orchestrator: The computing orchestrator man-
ages computing resources, both cloud and edge, to ensure
that each DT can process the data and learn the physical
space in real-time. It involves such as resource monitoring,
workload balancing, dynamic resource allocation, and edge-
cloud coordination. Such orchestration must be in real-time
while constantly adapting to the dynamic needs of the DTs
and the fluctuating availability of resources. Practically, each
DT application can be packaged into a unit, such as a Pod
in Kubernetes comprising DT and knowledge base containers.
It can be deployed in a cloud-edge server computing cluster.
The orchestrator, typically at the cloud server, monitors real-
time resource usage in the cluster and DT demands, including
memory, CPU, GPU, and storage, as assessed by tools such
as Kubelet. With the global insights and perspective, the
orchestrator optimally allocates computing resources, ensuring
real-time processing capabilities for DTs.

B. Experimental Platform for IoFDT

An IoFDT experimental platform needs to be approached
from two aspects.

• Establishing a comprehensive experimental PoC for
IoFDT with interconnected federated DTs to support all
its key features of learning data and running DTs;

• Implementing a system-level PoC development and im-
plementation, including hardware/infrastructure and soft-
ware/algorithms for system demonstration and perfor-
mance evaluation.

Fig. 4 shows a proposed architecture of an IoFDT PoC
implementation with physical systems, network infrastructure,
and DTs. It is a open, programmable, and universal platform,
constructed with state-of-the-art, programmable sensing, com-
munication, and computing hardware (e.g., LiDARs, 5G NR
networks/ITS networks, MEC/cloud servers), and developer-
friendly open-source software (e.g., Open Daylight, Robot Op-
erating System, and TensorFlow/PyTorch). The experimental
integrated IoFDT platform unifies cyber and physical spaces
and satisfy the practical requirements of diverse applications.
Given the platform’s emphasis on mobility as an example, we
developed a Smart Mobility Research & Education Field in
Tokyo Tech, as shown in Fig. 4, with state-of-the-art infrastruc-
tures, e.g., 5G NR network, millimeter (mmWave) vehicular
networks (backhaul/access) [14], roadside units (RSUs) and
connected automated driving vehicles (CAVs) as a cornerstone
of PoC implementation for IoFDT.

PoC trials demonstrated the system functions and enhanced
vehicle perception, assisting safer automated driving. For
example, as shown in 5, we developed a smart mobility
DT fusing detected traffic information from RSUs and CAVs
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Fig. 4: Overview of IoFDT PoC and experimental field in Tokyo Tech

Fig. 5: Smart mobility DT and DT-based path optimization.

[15]. Based on real-time global traffic information in DT,
optimized paths are calculated for CAV at intersections in the
cloud server and sent to CAV via vehicular network. CAV
will adjust its path accordingly. A demo video is available1.
The IoFDT PoC platform will be built on these prelimi-
nary experimental works as well as extensive works on AI,
communication networks, computing networks, and platforms
discussed in previous sections. We are also developing and
implementing diverse smart mobility prototype applications
on the IoFDT PoC system, aiming to demonstrate IoFDT’s
feasibility and merits. Examples include DT-based collision
prediction and avoidance system, and a DT-based car-sharing
system, as typical and key Society 5.0 use-cases. Additionally,

1https://youtu.be/Y3XXlNIRmXI

this platform can be utilized to develop a wide range of DT-
based applications beyond smart mobility.

V. CONCLUSION AND RECOMMENDATIONS

In this paper, we present the vision of IoFDT by covering
its various aspects, including communication, learning, and
computing, as well as implementation and platform. To ad-
vance IoFDT and facilitate Society 5.0, we provide several
recommendations for advancing this field:

• Synchronization and Interaction: While individual DTs
must be synchronized with physical system, in an IoFDT,
it is necessary to also look at the cross-DT interactions
and coordination.

• Adaptive and Continuous Learning Frameworks: AI-
native networks and learning frameworks that are capa-
ble of changing and adapting over time are needed to
create to support the IoFDT. These frameworks must be
responsive to new data and changes in physical systems to
continuously enhance DTs’ performance and reliability.

• IoFDT-centric Resource Management: Due to the spe-
cific requirements of each DT in the IoFDT ecosystem,
efficient allocation of network and computing resources,
across the entire federation of DTs, is crucial for the
IoFDT. This includes the implementation of learning-
based dynamic network slicing and context-aware re-
source optimization.

• Application and Service: The development of novel ap-
plications and services enabled by IoFDT is necessary,
and Society 5.0 offers a fertile ground for this.
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