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We adopt the convention that

sign(x) =

{
1 x > 0

−1 x ≤ 0

Let z(1), . . . ,z(T ) be the training examples in Rd (namely, each example is
a vector with d real coordinates. Each z(i) is normalized to length 1, namely
||z(i)|| = 1 for all i. We are given the labels for the training examples, let
them be y1, . . . ,yT .

The examples are linearly separable, namely there is a vector w∗ ∈ Rd
such that for all 1 ≤ i ≤ T ,

sign(w∗ · z(i)) = yi.

For convenience, we set ||w∗|| = 1.

The perceptron training algorithm

Input: Training examples z(1), . . . ,z(T ) and labels y1, . . . ,yT
0. Initialize w(1) = 0
1. for i = 1, . . . ,T :
2. Estimate ŷi = sign(w(i) · z(i))
3. if ŷi = yi:
4. w(i+1) = w(i) (no error)
5. else:
6. w(i+1) = w(i) + yiz

(i) (error)
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Output: w(T+1), best estimate of the separating hyperplane

We say we make an error in the i′th step if we reach the else statement
(line 6) in the i′th iteration of the for loop above.

Theorem 1 Let

γ = min
1≤i≤T

∣∣∣∣∣w∗ · z(i)||w∗||

∣∣∣∣∣ = min
1≤i≤T

∣∣∣w∗ · z(i)∣∣∣ (since ||w∗|| = 1). (1)

Then the Perceptron Training Algorithm makes ≤ 1
γ2

errors.

We prove this theorem using the following steps:

Lemma 2 For every example, sign(w∗ · z(i))yi > 0. In every step that we
make an error (namely, reach the else statement in the algorithm), we will
have sign(w(i) · z(i))yi < 0.
Proof Clear from the definitions of w∗ and because we enter the else state-
ment only when sign(w(i) · z(i)) 6= yi.

Lemma 3 In step i, if we make an error, then

w(i+1) ·w∗ ≤ w(i) ·w∗ + γ.

Proof

w(i+1) ·w∗ (a)
= (w(i) + yiz

(i)) ·w∗

(b)
= w(i) ·w∗ + yiw

∗ · z(i)

(c)

≥ w(i) ·w∗ + γ

where (a) follows because we reach the else line if there is an error in our pre-
diction during step i, (b) because the dot product distributes over addition,
and (c) from Lemma 2 and from Equation (1).

Lemma 4 In step i, if we make an error, then

||w(i+1)||2 ≤ ||w(i)||2 + 1.
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Proof

||w(i+1)||2 (a)
= ||wi) + yiz

(i)||2

(b)
= (wi) + yiz

(i)) · (wi) + yiz
(i))

(c)
= w(i) ·w(i) + 2yiw

(i) · z(i) + (yiz
(i)) · (yiz(i))

= ||w(i)||2 + 2yiw
(i) · z(i) + ||yiz(i))||2

(d)

≤ ||w(i)||2 + ||yiz(i))||2

= ||w(i)||2 + 1

where (a) follows because we reach the else statement of the algorithm if
there is an error in the $i’$th step, (b) because the length of a vector squared
equals the dot product of the vector with itself, (c) because the dot product
distributes over addition, (d) from Lemma 2 which asserts yiw(i) · z(i) < 0
whenever there is an error in the $i’$th step and the last step because the
vector z(i) has length 1, and yi is just ±1.

Proof of the Theorem. We put all the Lemmas together.
Suppose we make M errors in the T iterations of the for loop. Using

Lemma 3 and because w(1) = 0, we have

w(T+1) ·w∗ ≥Mγ. (2)

Using Lemma 4 and because w(1) = 0, we have

||w(T+1)||2 ≤M. (3)

But we know
w(T+1) ·w∗ = ||w(T+1)||||w∗|| cos θ,

where θ is the angle between w(T+1) and w∗. Because cos θ ≤ 1 no matter
what θ is, we have

w(T+1) ·w∗ ≤ ||w(T+1)||||w∗||. (4)

The equation above is very important and is an instance of the Cauchy
Schwartz inequality. But combining Equations (2), (3) and (4), we have

Mγ ≤ w(T+1) ·w∗ ≤ ||w(T+1)||||w∗|| ≤
√
M · 1,

or that Mγ ≤
√
M . This of course implies

M ≤ 1

γ2

as we wanted to show.
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