
5.5 Ridge Regression

In linear regression, we have a real valued measurement Y of a signal x (po-
tentially a vector) that we want to measure, potentially corrupted by noise.
Linear regression is ubiquitous as a component of several algorithms, but a
commonplace standalone (and important) example is fMRI signals. We will
assume that the measurements are linear (i.e., the signal x is transformed by
linear operations, which is equivalent to multiplying by a matrix in general).

This is quite a vast topic in itself, and this module covers what is known
as Ridge Regression. The formulation we adopt here is the "Bayesian" view.
You will contrast this with the frequentist approach, and it is recommended
you familiarize yourself with the frequentist (Maximum Likelihood) approach
first.

We posit, as in the Maximum Likelihood case that the target Y and the
measurements B of the unknown signal X be written in matrix form as

Y = BX + Z,

where specifically, Y is a vector of the n targets, B is the n×k measurement
matrix, and Z is a vector of discrepancies. Here again we assume Z is a
vector of n Gaussian random variables. But now we assume something more,
that X is a multivariate Gaussian as well, independent of Z. Therefore, X,
Y and Z are all jointly Gaussian. Specifically, we assume X ∼ N (0,Σ),
Z ∼ N (0, ν2I) (and X and Z are independent). We assume X has a non-
degenerate pdf, i.e., Σ is invertible.

The best estimate of Y from X in the mean square sense, namely

X̂(Y ) = argmin
f(Y )

E||X − f(Y )||2,

where the minimization is over any function of the observations Y , is given
by

X̂(Y ) = E[X|Y ]

by standard arguments from EE342.
Of course, the conditional mean E[X|Y ] has a special form for Gaussians,

and we can reuse the insights from multivariate Gaussians.

5.6 Gaussians and ridge regression

Find the answers to the (why?) questions in the Gaussian module or by
elementary manipulations.
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Since X and Y are jointly Gaussian, we know therefore that E[X|Y ]
is a linear function of Y (why?). Furthermore since EX = EZ = 0 by
assumption, we have EY = 0 as well (why?). Therefore,

E[X|Y ] = AY,

and the orthogonality principle yields,

A = cov(X,Y )cov(Y, Y )−1

Now, show that
cov(X,Y ) = ΣBT

and
cov(Y, Y ) = BΣBT + ν2I.

Therefore,

A =
1

ν2
ΣBT (

1

ν2
BΣBT + I)−1

= Σ(I +
1

ν2
BTBΣ)−1 1

ν2
BT

= (BTB +Σ−1ν2)−1BT

Can you prove the last and the second to last equalities? They are very
useful, and form part of the series of equalities that go into the Matrix
Inversion Lemma. The second equality states for any X and Y such that
both XY and Y X exist, and I+XY is invertible, we will have that I+Y X

is also invertible and

(I + Y X)−1Y = Y (1 +XY )−1.

The last equality is simple manipulations using (AB)−1 = B−1A−1 and
noting that Σ is invertible.

Therefore, our estimate of X in the Bayesian sense is

(BTB + ν2Σ−1)−1BTY, (5)

which actually looks quite close to the OLS estimate of (BTB)−1BTY , dif-
fering only by the ν2Σ−1 term within the inverse.
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Regularization view To get a little more insight into this, let Σ = σ2I.
The expression for the BAyesian estimate of X reduces to

(BTB +
ν2

σ2
I)−1BTY.

Now consider solving the following problem

argmin
x

||Y −Bx||2 +
ν2

σ2
||x||2. (6)

We would take the gradient of the expression above with respect to x, and
this turns out to be

2BT (Bx− Y ) +
ν2

σ2
2x.

Setting the gradient to 0 and rearranging we get

(BTB +
ν2

σ2
I)x = BTY,

and solving for x gives us the Bayesian optimal solution. You can verify that
the Hessian,

(BTB +
ν2

σ2
I)T = (BTB +

ν2

σ2
I)

is positive definite if B has a trivial null space, as in the OLS case, thus
the Bayesian optimal solution (BTB + ν2

σ2 I)
−1BTY is a minima. It is also

the global minima because the objective being minimized is convex (over a
convex domain) and we can have only one minimum.

Therefore, the Bayesian framework is equivalent to minimizing Equa-
tion~(6). Notice the objective we are minimizing is the least squares loss
(||Y − Bx||2), but we add to it a term that depends on the length squared
of x, i.e., ||x||2.

If xb is the Bayes optimal solution, we must have

||Y −Bxb||
2 +

ν2

σ2
||xb||

2 ≤ ||Y −BxOLS ||
2 +

ν2

σ2
||xOLS ||

2, (7)

because, of course, xb is the minima of . In fact, we usually have

||Y −Bxb||
2 > ||Y −BxOLS ||

2

but
||xb||

2 < ||xOLS ||
2,
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while satisfying Equation~(7).
Therefore the Bayes optimal solution xb shrinks the OLS estimate. Es-

timates like this, where we give preference to solutions that have some sim-
plicity (here by simplicity we mean smaller Euclidean length), are called
regularized estimates. Here the term ||x||2 in the objective function of~(6)
is called the regularization penalty, and since this is the ℓ2 norm of x, this
sort of regularization is called ℓ2 regularization or Ridge regression.

Problem Show that the general Bayes optimal solution in Equation~(5)
is the solution of the optimization problem

argmin
x

||Y −Bx||2 +
1

ν2
x
TΣ−1

x,

where Σ is the covariance matrix of X (hence symmetric and positive defi-
nite).

Problem Find answers to all the (why?) questions in the handout.
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