5.2 Geometry of linear regression

In Ordinary Least Squares (OLS), we choose the vector \mathbf{x}_{OLS} satisfying

$$\mathbf{x}_{OLS} = \arg\min_{\mathbf{x}\in\mathbb{R}^k} ||Y - B\mathbf{x}||^2.$$

It is quite easy to figure out what \mathbf{x}_{OLS} should be, see the module on the Geometry of Linear Regression (from EE345). This document summarizes the background for your convenience. This document does not however attempt a full explanation of all relevant prior concepts from EE345. There are a number of places where you are asked (why? or definition?). Make sure you know the relevant concepts marked.

The solution will be

$$\mathbf{x}_{OLS} = (B^T B)^{-1} B^T Y,$$

as long as the null space (definition?) of B is trivial (meaning that the only solution of $B\mathbf{z} = \mathbf{0}$ is $\mathbf{z} = \mathbf{0}$, where \mathbf{z} is the vector of variables we are solving for)—or equivalently, when the columns of B are linearly independent (why?)

Problem Show that for any matrix B, $null(B) = null(B^TB)$. Therefore prove that if B has a trivial null space, B^TB will be invertible

And in most practical situations where B is a tall matrix, the matrix B will have a trivial null space, unless some of the features are introduced as a linear combination of others. But such linear combinations are redundant from a linear-model point of view and can be discarded from computation.

We briefly summarize the basic insight behind the geometry of linear regression, building on three elementary observations.

• The first elementary observation is that for any vector \mathbf{x} , $B\mathbf{x}$ is a linear combination of the columns of \mathbf{x} (why?). Recall that the column space of B is a linear space (definition?) and is the set of all possible linear combinations $B\mathbf{x}$ that can be obtained when we allow \mathbf{x} to range through every possible k-coordinate vector, *i.e.*, $\mathbf{x} \in \mathbb{R}^k$, namely

$$\operatorname{col}(B) = \Big\{ B\mathbf{x} : \mathbf{x} \in \mathbb{R}^k \Big\}.$$

No matter how we choose \mathbf{x}_{OLS} , $B\mathbf{x}_{OLS}$ is a point in the linear space col(B).

• The second elementary observation is that $Y - B\mathbf{x}$ is a vector connecting the tip of Y to a point in the linear space col(B).

• The third observation, combining the observations above, is that finding \mathbf{x}_{OLS} is equivalent to finding the point \mathbf{w}_{OLS} in col(B) closest to Y, namely,

$$\mathbf{w}_{OLS} = \min_{\mathbf{w} \in col(B)} ||Y - \mathbf{w}||^2,$$

and we will have $\mathbf{w}_{OLS} = B\mathbf{x}_{OLS}$. The point \mathbf{w}_{OLS} minimizing the equation above is simply the projection of Y onto the col(B), namely that $Y - \mathbf{w}_{OLS} = Y - B\mathbf{x}_{OLS}$ is orthogonal to every vector in col(B), or that $Y - B\mathbf{x}_{OLS} \in null(B^T)$ (why?)

From the last observation above, we have

$$B^T(Y - B\mathbf{x}_{OLS}) = \mathbf{0},$$

which after rearranging, and noting that $B^T B$ is invertible if B has a trivial null space, yields the expression for \mathbf{x}_{OLS} .