
5 Linear Regression

In linear regression, we have a real valued measurement Y of a signal x (po-
tentially a vector) that we want to measure, potentially corrupted by noise.
Linear regression is ubiquitous as a component of several algorithms, but a
commonplace standalone (and important) example is fMRI signals. We will
assume that the measurements are linear (i.e., the signal x is transformed by
linear operations, which is equivalent to multiplying by a matrix in general).

This is quite a vast topic in itself, and this module covers what is known
as Ordinary Least Squares. In this section, we focus on the "frequentist"
view that we tackle with the Maximum Likelihood (ML) principle. You can
contrast this with the Bayesian approach, which will be an juxtaposition on
Maximum Likelihood approach (see Ridge Regression).

5.1 Frequentist: Maximum Likelihood setup

Let x =







x1
...
xk






be an arbitrary k × 1 vector (called the the model, which we

want to estimate). We linearly measure x n times, and assume

yi =
[

bi1 · · · bik
]







x1
...
xk






+ Zi, 1 ≤ i ≤ n

where Zi is a normal random variable (we will assume mean 0 and variance
σ2). The bi1, . . . ,bik, 1 ≤ i ≤ n are fixed numbers that we control, and are
called the measurements. The output y is called the target. The variables
Zi, 1 ≤ i ≤ n are independent.

The n equations above can be written in one compact matrix form,

Y = BX + Z,

where Y is a vector of the n targets, B is the n×k measurement matrix,
whose i’th row is

[

bi1 · · · bik
]

from the equation above, and Z is the
vector of the n Gaussian random variables. The columns of B are often
called features or attributes (we will primarily use the word features).

A subtle point to note here is that we may not truly believe that the
target y is linearly related to x, but may choose to use this approach anyway.
For example, in the Boston housing example attached to this module, Y the
median price of a house in a neighborhood is predicted using features related
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to the neighborhood, such as the average age of houses therein, average
acreage of plots, zoning district, etc. We don’t truly believe the median
value of the house in the i’th neighborhood, yi, is a linear function of the
features bi1, . . . ,bi13 measured in that neighborhood. But we use it anyway,
because linear methods have a lot going for them as we will see.

Given our observations of the target Y , measurements B and given any
choice of x, we have

Z = Y −Bx.

Recall that we use ||Z|| for the Euclidean length or ℓ2 norm of the vector
Z, and ||Z||2 = ZTZ. See the module on norms.

For this choice of x then, the likelihood $L(Z|x) of the corresponding Z

is

L(Z|x) =
1

(2π)n/2
exp

(

−
1

2
ZTZ

)

=
1

(2π)n/2
exp

(

−
1

2
||Z||2

)

=
1

(2π)n/2
exp

(

−
1

2
||Y −Bx||2

)

.

The Maximum Likelihood principle asks us to choose the value of x that
maximizes the likelihood L(Z|x). From the above series of equalities, maxi-
mizing the likelihood is equivalent to minimizing ||Y −Bx||2, or minimizing
the length of the vector Y −Bx.

This is the Ordinary Least Squares (OLS) formulation. We choose the
vector xOLS satisfying

xOLS = arg min
x∈Rk

||Y −Bx||2.
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