
1 Learning conjunctions in a Probably Approxi-

mately Correct framework

Narayana Santhanam

1.1 Background:

Discrete probability, expectation, union bound

1.2 Aim:

You should be able to set up a learning problem in the standard probabilis-
tic framework (which we will call Probably Approximately Correct or PAC
learning), specifically the notions of confidence and accuracy. Understand
the purpose behind this formulation. For the problem of learning conjunc-
tions, you should understand how to derive the PAC bound on the training
sample, and be able to work out similar bounds for simple problems.

1.3 Content: Learning conjunctions

A literal is one of the following three binary valued functions of a binary
valued variable x: x or x̄ or 1, where x̄ is the complement of x. A conjunction

is the logical "AND" of literals corresponding to n binary variables. For
example, if n = 2, there are 9 possible conjunctions

H2 = {x1 ∧ x2, x̄1 ∧ x2, x2, x1 ∧ x̄2, x̄1 ∧ x̄2, x̄2, x1, x̄1, 1}

In general, when you have n variables, there are 3n possible conjunctions,
and we will denote this set of functions by Hn.

Now suppose we have binary random variables X1, . . . ,Xn, and each Xi

can take on a value of 0 or 1. We let the sample space (denoted by Ω) to be
the set of all values the vector (X1, . . . ,Xn) can take (so the sample space is
the set of 2n length-n binary vectors)

A slightly pedantic note: to just represent the function arguments, we
have used lower case letters of the corresponding random variables. In gen-
eral, we reserve capitals for random variables. We will, of course, evaluate
the function at points indicated by the random variables in the future—then
the result of the evaluation is itself another random variable.

3



Hypothesis or concept class This is usually the first step of model-
ing any problem in learning—we come up with a set of possible hypothe-
sis/concepts, where each concept is a function on Ω. In our first example,
the hypothesis class is Hn. Note how each conjunction in Hn is a function
from Ω to {0, 1}.

Learning conjunctions is set up as follows: Imagine some hypothesis c ∈
Hn is true. Using the evaluations of c on some of the elements of Ω, our goal
is to infer the function c.

A look at some concrete numbers will show us interesting this premise
is. First, even for a small-ish n = 50, the size of Ω is 250, really large. The
number of conjunctions is 350, even larger. Of these 350 conjunctions, one is
true, and we are going to see the evaluation of that function on a few points,
no more than a 1000, let us say. From the evaluation on these few points, we
have to estimate the function "reasonably". Needless to say, there may be
many, many conjunctions that are consistent with the evaluations on these
few points. To make this happen, we set up the problem probabilistically.

Training examples Fix some distribution D on this Ω. D need not be
such that the components of the vector, Xi, are independent, it can be any
valid probability assignment on Ω. In class, we reviewed basic probability
definitions here, you will find them in (Section 1.2).

A training example is an element from Ω sampled according to the distri-
bution D, and the value of the true hypothesis on this vector. For instance,
assume n = 2, a training example could be the observation X1 = 0, X2 = 1,
c(X1, X2) = 0.

Training sample For i = 1, . . . ,m, X(1), . . . ,X(m) are picked indepen-
dently according to distribution D from Ω. c is the true concept from
Hn (which we do not know but are trying to learn). Now let Z(i) =
(X(i), c(X(i))) be the training sample (basically, m binary vectors, inde-
pendently chosen according to D, and the value of the concept on those
vectors).

Once again, pay attention to the notation here, each of X(i) is a vector

of n binary random variables, i.e., X(i) = (X
(i)
1 , . . . ,X

(i)
n ), and that vector

is chosen according to D. While the X(i) are independent vectors (so, the
training vector X(1) carries no information about X(2)), the components of
each of X(i) need not be (so, for instance, the first component of X(1) may
tell us something about the third component of X(1)) depending on what D
is chosen.

4



We need to use Z(1), . . . ,Z(m) in any way possible to learn the concept c.

Probability of error Consider any algorithm A that generates, using only
the training data, an estimate Ĉ of the true concept c ∈ Hn. Generally, Ĉ
also belongs to Hn, but here we will allow in addition to functions in Hn,
the zero function that assigns to all elements of Ω the value 0. We write
Ĉ (capitals) because the output is a function of the randomly generated
training sample, and is therefore a random variable itself. If we have not
seen all members of Ω and their labels, it is possible that Ĉ 6= c. Let E

Ĉ
be

the event that Ĉ(x) 6= c, ie

E
Ĉ
=

{

x ∈ Ω : Ĉ(x) 6= c(x)
}

.

Now, we don’t care if E
Ĉ

is a small set or a big set, whether it contains
just one element of Ω or even constains most of the elements of Ω. What
matters is its probability under the distribution D (perfectly possible that
sets with large number of elements have small probability and vice versa).
We focus on the probability D(E

Ĉ
), which we call the probability of error.

While we may not get the concept c exactly, we would at least want our
estimate Ĉ to have small probability of error.

Algorithm: keep-them-consistent The simplest algorithm (call this A)
starts with x1 ∧ x̄1 ∧ x2 ∧ x̄2 · · · ∧ xn ∧ x̄n (such a function would evaluate to
0 everywhere). We weed out any literal inconsistent with the training data,
and output what remains at the end.

Can you come up with a sequence of steps that accomplishes this? Write
this as a psuedocode.

Note how the algorithm A takes in a training sample, and outputs a hy-
pothesis in a deterministic manner given the training sample. Therefore if the
training sample is Z(1), . . . ,Z(m) and output is Ĉ, we write A(Z(1), . . . ,Z(m)) =
Ĉ. Randomized algorithms are often used in practice as well (and those can-
not generally be expressed as a function like above), but for this simple
problem, it suffices to stick to deterministic algorithms as above.

Since there is at least one concept (the true c) that is consistent with the
training data, we will be able to output some Ĉ using this approach. But in
general, the training sample is far smaller than the size of Ω, so we will have
not observed the function at all possible elements of Ω. So it is quite possible
that multiple concepts are consistent with the limited observations we have
seen. This scenario is almost always the case with learning problems.

5



If Ĉ 6= c, what has happened is that Ĉ and c have the same labels on
the points of Ω we have seen (but obviously differ on other points since they
are different functions). As defined above, the set of all points on which
they differ is precisely the set E

Ĉ
, and we measure the quality of Ĉ with the

probability of error.

Misleading training samples The problem with a lot of learning is that
the training data misleads us. It fools us into choosing a hypothesis that
looks good on the training data but performs poorly in general (has high
probability of error).

Let us see how likely it is that we end up with such a bad hypothesis.
There could be different such misleading hypothesis, but let us begin by
fixing any one and think about that.

Formally, fix some output Ĉ the algorithm can have yielded, and assume
the probability of error of Ĉ against the true hypothesis exceeds a level ǫ (a
number between 0 and 1) we are comfortable with, i.e., D(E

Ĉ
) > ǫ.

This means of course that the event Ĉ(X) = c(X), which corresponds to
the set Ec

Ĉ
(the complement of the set E

Ĉ
) has probability ≤ 1− ǫ.

Let the event that the algorithm chooses Ĉ be A
Ĉ
. Now A

Ĉ
happens to

be the intersection of these two events (i.e., both conditions must be true)

1. Each training vector X(i) ∈ Ec

Ĉ
. We will denote this event as

(

Ec

Ĉ

)m

.

2. The algorithm may not really output Ĉ when presented with training

vectors all in Ec

Ĉ
, namely X(1), . . . ,X(m) ∈

(

Ec

Ĉ

)m

. So in addition,

X(1), . . . ,X(m) must be such that the algorithm outputs Ĉ on Ĉ on
them. This really depends on the algorithm and hard to quantify
exactly, but as we will see, it will not matter.

We are looking for an upper bound on the probability of A
Ĉ
, i.e., D(A

Ĉ
).

Now for any two sets S and T , D(S∩T ) ≤ D(S), so if we compute (an upper

bound on) D(
(

Ec

Ĉ

)m

), we can then claim D(A
Ĉ
) ≤ D(

(

Ec

Ĉ

)m

).

Computing an upper bound on D(
(

Ec

Ĉ

)m

) is not too hard. Since the

X(i) are all independently chosen from D,

D(
(

Ec

Ĉ

)m

) =
(

D(Ec

Ĉ
)
)m

≤ (1− ǫ)m

6



where the last inequality above follows because Ĉ is a bad hypothesis
(D(E

Ĉ
) > ǫ). Thus the probability of choosing any one bad hypothesis Ĉ

by the algorithm is

D(A
Ĉ
) ≤ D(

(

Ec

Ĉ

)m

) ≤ (1− ǫ)m.

But how many such bad hypotheses are there? We cannot know a precise
number without more details on the algorithm and the true concept, but we
do know that it is ≤ 3n, since there are only 3n + 1 possible outputs, one of
which is correct. Surprisingly, we don’t need to pursue a better answer to
come up with something interesting. We are going to use the union bound,
a seemingly trivial, but very useful observation:

P(∪i≥1Ai) ≤
∑

i≥1

P(Ai).

We will use the union bound above as follows. Consider all bad hypothesis
Ĉ1, . . . ,Ĉk, where, as we observed trivially k ≤ 3n. Let A

Ĉi
be the event we

choose the hypothesis Ĉi. Then the probability we choose a bad hypothesis
is

D(∪k
i=1AĈi

) ≤
k

∑

i=1

D(A
Ĉi
) ≤ k(1− ǫ)m

where the last inequality follows because the probability of any single
bad hypothesis being chosen is ≤ (1− ǫ)m. Since k ≤ 3n, the probability of
choosing a bad hypothesis is

≤ 3n(1− ǫ)m.

This is interesting, because the probability above drops exponentially as
m increases. Indeed if (ln is logarithm to the natural base e)

m ≥
1

ǫ

(

ln
1

η
+ n ln 3

)

,

the probability of choosing a bad hypothesis is < η. Prove the above by
using 1− ǫ ≤ e−ǫ.

Probably Approximate Learning So the big picture is this. We out-
put a conjunction consistent with the training data (and while you have to
provide an algorithm above, you can obtain an algorithm that runs in time

7



polynomial in n and m). We know that so long as m ≥ 1
ǫ

(

log 1
η
+ n log 3

)

, we

will be assured that the our hypothesis is probably (with confidence ≥ 1− η

over choices of training samples), approximately correct (prob of error of
output hypothesis < ǫ).

This requirement on the training size is way way smaller than the size of
Ω — 2n —for example, when n = 100, m can be a little more than 100, but
the size of Ω is 2100, greater than the number of atoms in the universe.

In summary, having looked at a very small number of elements of Ω, very
likely (ie with probability ≥ 1− η over choices of training samples), we have
chosen an approximately correct (prob of error of the output hypothesis < ǫ)
algorithm. We can set η and ǫ to be values as small as we want.

This is called "PAC" learning (PAC for probably approximately correct).
Almost all learning has similar guarantees, since the training data is funda-
mentally randomly generated.

8


