Is \((A+B)^2 = A^2 + 2 AB + B^2?\) If not, write the correct rule.
Consider the plane of all linear combinations of the vectors \(\begin{bmatrix} 1\\2\\3 \end{bmatrix}\) and \(\begin{bmatrix} 3\\2\\1 \end{bmatrix}\), where the three coordinates are interpreted as the \(x-\), \(y-\) and \(z-\) coordinates. How do we check if all points on the \(x-\)axis lie in the plane?