
5.3 Geometry is not enough, Generalization is key

The geometry of linear regression is quite cool, but it also indicates a serious
flaw if used uncritically. Suppose we add a new column to our measurement
matrix B to produce a new measurement matrix B+. This new column—
our fake feature—could simply be a column of randomly generated numbers.
Clearly every vector in col(B) is in col(B+). Let the projection of the target
y into col(B) be wOLS = BxOLS .

Since col(B) ⊂ col(B+), wOLS ∈ col(B+) as well. So when we solve the
regression with the new measurement matrix B+, we wish to find

min
w∈col(B+)

||Y −w||2,

but of course

min
w∈col(B+)

||Y −w||2 ≤ ||Y −wOLS ||
2 = min

w∈col(B)
||Y −w||2,

since the left most side above minimizes over all points in col(B+) and wOLS

is one of the points in col(B+). The minimum cannot get worse than wOLS

at least.
So adding any feature, including randomly generating a fake one (as in

the attached demo) to our training data, can only reduce the mean square
error on training data. In the attached notebook, you will find that in the
Boston housing dataset, we can drive down the mean square error on training
examples to 0 by adding enough randomly generated features. This is clearly
insane from the perspective of meaningful models.

So we have to look at the least squares approach more critically. The
principle we used to choose the model x was Maximum Likelihood, but what
we really want is that the model we choose is meaningful in some way. The
most common way to phrase this is that the model x we pick must generalize.
This means that if we choose x based on measurements B and observations
Y and were subsequently given a new test measurement

[

b1 , . . . , bk
]

,

our prediction
[

b1 , . . . , bk
]

x

must not deviate too far from the ground truth on the test example.
Armed with this insight, how should we build a model? If we have a

bunch of measurements B, we use the simple expedient of partitioning the

28



measurements into training measurements Btrain and validation Bv measure-
ments, i.e., we partition the rows of B into two disjoint sets. The targets
for measurements Btrain are in the vector Ytrain, and for measurements Bv

in Yv. We choose the model x based on only Btrain and Ytrain, and use the
model so obtained to predict the target on the validation set Bvxtrain. The
training error

||Ytrain −Btrainxtrain||
2

measures the fit on the training data, but this is just geometry and the
numerical magnitude does not have much significance. But the validation
error,

||Yv −Bvxtrain||
2

is interesting. Ideally, we would like to see the validation and training
errors match up. If one is too far from the other, it is a sign that the geometry
of linear regression is getting fooled, possibly from irrelevant or misleading
features.
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